ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a new software tool to enable astronomers to easily compare observations of emission line ratios with those determined by photoionization and shock models, ITERA, the IDL Tool for Emission-line Ratio Analysis. This tool can plot ratios of emission lines predicted by models and allows for comparison of observed line ratios against grids of these models selected from model libraries associated with the tool. We provide details of the libraries of standard photoionization and shock models available with ITERA, and, in addition, present three example emission line ratio diagrams covering a range of wavelengths to demonstrate the capabilities of ITERA. ITERA, and associated libraries, is available from url{http://www.brentgroves.net/itera.html}
[abridged] Stars are thought to be formed predominantly in clusters. The clusters are formed following a cluster initial mass function (CMF) similar to the stellar initial mass function (IMF). Both the IMF and the CMF favour low-mass objects. The num erous low-mass clusters will lack high mass stars. If the integrated galactic initial mass function originates from stars formed in clusters, the IGIMF could be steeper than the IMF. We investigate how well constrained this steepening is and how it depends on the choice of sampling method and CMF. We compare analytic sampling to several implementations of random sampling of the IMF, and different CMFs. We implement different IGIMFs into GALEV to obtain colours and metallicities for galaxies. Choosing different ways of sampling the IMF results in different IGIMFs. Depending on the lower cluster mass limit and the slope of the cluster mass function, the steepening varies between very strong and negligible. We find the size of the effect is continuous as a function of the power-law slope of the CMF, if the CMF extends to masses smaller than the maximum stellarmass. The number of O-stars detected by GAIA might help in judging on the importance of the IGIMF effect. The impact of different IGIMFs on integrated galaxy photometry is small, within the intrinsic scatter of observed galaxies. Observations of gas fractions and metallicities could rule out at least the most extreme sampling methods. As we still do not understand the details of star formation, one sampling method cannot be favoured over another. Also, the CMF at very low cluster masses is not well constrained observationally. These uncertainties need to be taken into account when using an IGIMF, with severe implications for galaxy evolution models and interpretations of galaxy observations.
We perform hydrodynamical simulations of the accretion of pebbles and rocks onto protoplanets of a few hundred kilometres in radius, including two-way drag force coupling between particles and the protoplanetary disc gas. Particle streams interacting with the gas far out within the Hill sphere of the protoplanet spiral into a prograde circumplanetary disc. Material is accreted onto the protoplanet due to stirring by the turbulent surroundings. We speculate that the trend for prograde rotation among the largest asteroids is primordial and that protoplanets accreted 10%-50% of their mass from pebbles and rocks during the gaseous solar nebula phase. Our model also offers a possible explanation for the narrow range of spin periods observed among the largest bodies in the asteroid and trans-Neptunian belts, and predicts that 1000 km-scale Kuiper belt objects that have not experienced giant impacts should preferentially spin in the prograde direction.
75 - L. Birzan 2009
Chandra X-ray Observatory has revealed X-ray cavities in many nearby cooling flow clusters. The cavities trace feedback from the central active galactic nulceus (AGN) on the intracluster medium (ICM), an important ingredient in stabilizing cooling fl ows and in the process of galaxy formation and evolution. But, the prevalence and duty cycle of such AGN outbursts is not well understood. To this end, we study how the cooling is balanced by the cavity heating for a complete sample of clusters (the Brightest 55 clusters of galaxies, hereafter B55). In the B55, we found 33 cooling flow clusters, 20 of which have detected X-ray bubbles in their ICM. Among the remaining 13, all except Ophiuchus could have significant cavity power yet remain undetected in existing images. This implies that the duty cycle of AGN outbursts with significant heating potential in cooling flow clusters is at least 60 % and could approach 100 %, but deeper data is required to constrain this further.
93 - Anders Johansen 2008
Hydromagnetic stresses in accretion discs have been the subject of intense theoretical research over the past one and a half decades. Most of the disc simulations have assumed a small initial magnetic field and studied the turbulence that arises from the magnetorotational instability. However, gaseous discs in galactic nuclei and in some binary systems are likely to have significant initial magnetisation. Motivated by this, we performed ideal magnetohydrodynamic simulations of strongly magnetised, vertically stratified discs in a Keplerian potential. Our initial equilibrium configuration, which has an azimuthal magnetic field in equipartion with thermal pressure, is unstable to the Parker instability. This leads to the expelling of magnetic field arcs, anchored in the midplane of the disc, to around five scale heights from the midplane. Transition to turbulence happens primarily through magnetorotational instability in the resulting vertical fields, although magnetorotational shear instability in the unperturbed azimuthal field plays a significant role as well, especially in the midplane where buoyancy is weak. High magnetic and hydrodynamical stresses arise, yielding an effective $alpha$-value of around 0.1 in our highest resolution run. Azimuthal magnetic field expelled by magnetic buoyancy from the disc is continuously replenished by the stretching of a radial field created as gas parcels slide in the linear gravity field along inclined magnetic field lines. This dynamo process, where the bending of field lines by the Parker instability leads to re-creation of the azimuthal field, implies that highly magnetised discs are astrophysically viable and that they have high accretion rates.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا