ترغب بنشر مسار تعليمي؟ اضغط هنا

306 - Ziwei Fan , Zhiwei Liu , Lei Zheng 2021
The sequential patterns within the user interactions are pivotal for representing the users preference and capturing latent relationships among items. The recent advancements of sequence modeling by Transformers advocate the community to devise more effective encoders for the sequential recommendation. Most existing sequential methods assume users are deterministic. However, item-item transitions might fluctuate significantly in several item aspects and exhibit randomness of user interests. This textit{stochastic characteristics} brings up a solid demand to include uncertainties in representing sequences and items. Additionally, modeling sequences and items with uncertainties expands users and items interaction spaces, thus further alleviating cold-start problems. In this work, we propose a Distribution-based Transformer for Sequential Recommendation (DT4SR), which injects uncertainties into sequential modeling. We use Elliptical Gaussian distributions to describe items and sequences with uncertainty. We describe the uncertainty in items and sequences as Elliptical Gaussian distribution. And we adopt Wasserstein distance to measure the similarity between distributions. We devise two novel Trans-formers for modeling mean and covariance, which guarantees the positive-definite property of distributions. The proposed method significantly outperforms the state-of-the-art methods. The experiments on three benchmark datasets also demonstrate its effectiveness in alleviating cold-start issues. The code is available inhttps://github.com/DyGRec/DT4SR.
We design and experimentally evaluate a hybrid safe-by-construction collision avoidance controller for autonomous vehicles. The controller combines into a single architecture the respective advantages of an adaptive controller and a discrete safe con troller. The adaptive controller relies on model predictive control to achieve optimal efficiency in nominal conditions. The safe controller avoids collision by applying two different policies, for nominal and out-of-nominal conditions, respectively. We present design principles for both the adaptive and the safe controller and show how each one can contribute in the hybrid architecture to improve performance, road occupancy and passenger comfort while preserving safety. The experimental results confirm the feasibility of the approach and the practical relevance of hybrid controllers for safe and efficient driving.
311 - Lei Zheng , Rui Yang , Zhixuan Wu 2021
In this paper, a safe and learning-based control framework for model predictive control (MPC) is proposed to optimize nonlinear systems with a gradient-free objective function under uncertain environmental disturbances. The control framework integrat es a learning-based MPC with an auxiliary controller in a way of minimal intervention. The learning-based MPC augments the prior nominal model with incremental Gaussian Processes to learn the uncertain disturbances. The cross-entropy method (CEM) is utilized as the sampling-based optimizer for the MPC with a gradient-free objective function. A minimal intervention controller is devised with a control Lyapunov function and a control barrier function to guide the sampling process and endow the system with high probabilistic safety. The proposed algorithm shows a safe and adaptive control performance on a simulated quadrotor in the tasks of trajectory tracking and obstacle avoidance under uncertain wind disturbances.
101 - Lei Zheng , Rui Yang , Jiesen Pan 2020
Enforcing safety on precise trajectory tracking is critical for aerial robotics subject to wind disturbances. In this paper, we present a learning-based safety-preserving cascaded quadratic programming control (SPQC) for safe trajectory tracking unde r wind disturbances. The SPQC controller consists of a position-level controller and an attitude-level controller. Gaussian Processes (GPs) are utilized to estimate the uncertainties caused by wind disturbances, and then a nominal Lyapunov-based cascaded quadratic program (QP) controller is designed to track the reference trajectory. To avoid unexpected obstacles when tracking, safety constraints represented by control barrier functions (CBFs) are enforced on each nominal QP controller in a way of minimal modification. The performance of the proposed SPQC controller is illustrated through numerical validations of (a) trajectory tracking under different wind disturbances, and (b) trajectory tracking in a cluttered environment with a dense time-varying obstacle field under wind disturbances.
122 - Lei Zheng , Jiesen Pan , Rui Yang 2020
Safety and tracking stability are crucial for safety-critical systems such as self-driving cars, autonomous mobile robots, industrial manipulators. To efficiently control safety-critical systems to ensure their safety and achieve tracking stability, accurate system dynamic models are usually required. However, accurate system models are not always available in practice. In this paper, a learning-based safety-stability-driven control (LBSC) algorithm is presented to guarantee the safety and tracking stability for nonlinear safety-critical systems subject to control input constraints under model uncertainties. Gaussian Processes (GPs) are employed to learn the model error between the nominal model and the actual system dynamics, and the estimated mean and variance of the model error are used to quantify a high-confidence uncertainty bound. Using this estimated uncertainty bound, a safety barrier constraint is devised to ensure safety, and a stability constraint is developed to achieve rapid and accurate tracking. Then the proposed LBSC method is formulated as a quadratic program incorporating the safety barrier, the stability constraint, and the control constraints. The effectiveness of the LBSC method is illustrated on the safety-critical connected cruise control (CCC) system simulator under model uncertainties.
Cross-domain recommendation can alleviate the data sparsity problem in recommender systems. To transfer the knowledge from one domain to another, one can either utilize the neighborhood information or learn a direct mapping function. However, all exi sting methods ignore the high-order connectivity information in cross-domain recommendation area and suffer from the domain-incompatibility problem. In this paper, we propose a textbf{J}oint textbf{S}pectral textbf{C}onvolutional textbf{N}etwork (JSCN) for cross-domain recommendation. JSCN will simultaneously operate multi-layer spectral convolutions on different graphs, and jointly learn a domain-invariant user representation with a domain adaptive user mapping module. As a result, the high-order comprehensive connectivity information can be extracted by the spectral convolutions and the information can be transferred across domains with the domain-invariant user mapping. The domain adaptive user mapping module can help the incompatible domains to transfer the knowledge across each other. Extensive experiments on $24$ Amazon rating datasets show the effectiveness of JSCN in the cross-domain recommendation, with $9.2%$ improvement on recall and $36.4%$ improvement on MAP compared with state-of-the-art methods. Our code is available online ~footnote{https://github.com/JimLiu96/JSCN}.
369 - Kan Ren , Jiarui Qin , Lei Zheng 2019
The emergence of real-time auction in online advertising has drawn huge attention of modeling the market competition, i.e., bid landscape forecasting. The problem is formulated as to forecast the probability distribution of market price for each ad a uction. With the consideration of the censorship issue which is caused by the second-price auction mechanism, many researchers have devoted their efforts on bid landscape forecasting by incorporating survival analysis from medical research field. However, most existing solutions mainly focus on either counting-based statistics of the segmented sample clusters, or learning a parameterized model based on some heuristic assumptions of distribution forms. Moreover, they neither consider the sequential patterns of the feature over the price space. In order to capture more sophisticated yet flexible patterns at fine-grained level of the data, we propose a Deep Landscape Forecasting (DLF) model which combines deep learning for probability distribution forecasting and survival analysis for censorship handling. Specifically, we utilize a recurrent neural network to flexibly model the conditional winning probability w.r.t. each bid price. Then we conduct the bid landscape forecasting through probability chain rule with strict mathematical derivations. And, in an end-to-end manner, we optimize the model by minimizing two negative likelihood losses with comprehensive motivations. Without any specific assumption for the distribution form of bid landscape, our model shows great advantages over previous works on fitting various sophisticated market price distributions. In the experiments over two large-scale real-world datasets, our model significantly outperforms the state-of-the-art solutions under various metrics.
While neural networks for learning representation of multi-view data have been previously proposed as one of the state-of-the-art multi-view dimension reduction techniques, how to make the representation discriminative with only a small amount of lab eled data is not well-studied. We introduce a semi-supervised neural network model, named Multi-view Discriminative Neural Network (MDNN), for multi-view problems. MDNN finds nonlinear view-specific mappings by projecting samples to a common feature space using multiple coupled deep networks. It is capable of leveraging both labeled and unlabeled data to project multi-view data so that samples from different classes are separated and those from the same class are clustered together. It also uses the inter-view correlation between views to exploit the available information in both the labeled and unlabeled data. Extensive experiments conducted on four datasets demonstrate the effectiveness of the proposed algorithm for multi-view semi-supervised learning.
326 - Kan Ren , Jiarui Qin , Lei Zheng 2018
Survival analysis is a hotspot in statistical research for modeling time-to-event information with data censorship handling, which has been widely used in many applications such as clinical research, information system and other fields with survivors hip bias. Many works have been proposed for survival analysis ranging from traditional statistic methods to machine learning models. However, the existing methodologies either utilize counting-based statistics on the segmented data, or have a pre-assumption on the event probability distribution w.r.t. time. Moreover, few works consider sequential patterns within the feature space. In this paper, we propose a Deep Recurrent Survival Analysis model which combines deep learning for conditional probability prediction at fine-grained level of the data, and survival analysis for tackling the censorship. By capturing the time dependency through modeling the conditional probability of the event for each sample, our method predicts the likelihood of the true event occurrence and estimates the survival rate over time, i.e., the probability of the non-occurrence of the event, for the censored data. Meanwhile, without assuming any specific form of the event probability distribution, our model shows great advantages over the previous works on fitting various sophisticated data distributions. In the experiments on the three real-world tasks from different fields, our model significantly outperforms the state-of-the-art solutions under various metrics.
328 - Yaoming Zhu , Sidi Lu , Lei Zheng 2018
We introduce Texygen, a benchmarking platform to support research on open-domain text generation models. Texygen has not only implemented a majority of text generation models, but also covered a set of metrics that evaluate the diversity, the quality and the consistency of the generated texts. The Texygen platform could help standardize the research on text generation and facilitate the sharing of fine-tuned open-source implementations among researchers for their work. As a consequence, this would help in improving the reproductivity and reliability of future research work in text generation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا