ترغب بنشر مسار تعليمي؟ اضغط هنا

We present results from 1078 high resolution spectra of 990 stars in the young open cluster NGC 2264, obtained with the Hectochelle multiobject echelle spectrograph on the 6.5m MMT. We confirm 471 stars as members, based on their radial velocity and/ or H-alpha emission. The radial velocity distribution of cluster members is non-Gaussian with a dispersion of approx 3.5 km/s. We find a substantial north-south velocity gradient and spatially coherent structure inthe radial velocity distribution, similar to that seen in the molecular gas in the region. Our results suggest that there are at least three distinguishable subclusters in NGC 2264, correlated with similar structure seen in 13CO emission, which is likely to be a remnant of initial structure in this very young cluster. We propose that this substructure is the result of gravitational amplification of initial inhomogeneities during overall collapse to a filamentary distribution of gas and stars, as found in simulations by Burkert & Hartman (2004).
We make use of new near and mid-IR photometry of the Pleiades cluster in order to help identify proposed cluster members. We also use the new photometry with previously published photometry to define the single-star main sequence locus at the age of the Pleiades in a variety of color-magnitude planes. The new near and mid-IR photometry extend effectively two magnitudes deeper than the 2MASS All-Sky Point Source catalog, and hence allow us to select a new set of candidate very low mass and sub-stellar mass members of the Pleiades in the central square degree of the cluster. We identify 42 new candidate members fainter than Ks =14 (corresponding to 0.1 Mo). These candidate members should eventually allow a better estimate of the cluster mass function to be made down to of order 0.04 solar masses. We also use new IRAC data, in particular the images obtained at 8 um, in order to comment briefly on interstellar dust in and near the Pleiades. We confirm, as expected, that -- with one exception -- a sample of low mass stars recently identified as having 24 um excesses due to debris disks do not have significant excesses at IRAC wavelengths. However, evidence is also presented that several of the Pleiades high mass stars are found to be impacting with local condensations of the molecular cloud that is passing through the Pleiades at the current epoch.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا