ترغب بنشر مسار تعليمي؟ اضغط هنا

Space-based gravitational wave detectors based on the Laser Interferometer Space Antenna (LISA) design operate by synthesizing one or more interferometers from fringe velocity measurements generated by changes in the light travel time between three s pacecraft in a special set of drag-free heliocentric orbits. These orbits determine the inclination of the synthesized interferometer with respect to the ecliptic plane. Once these spacecraft are placed in their orbits, the orientation of the interferometers at any future time is fixed by Keplers Laws based on the initial orientation of the spacecraft constellation, which may be freely chosen. Over the course of a full solar orbit, the initial orientation determines a set of locations on the sky were the detector has greatest sensitivity to gravitational waves as well as a set of locations where nulls in the detector response fall. By artful choice of the initial orientation, we can choose to optimize or suppress the antennas sensitivity to sources whose location may be known in advance (e.g., the Galactic Center or globular clusters).
Pulsar timing arrays act to detect gravitational waves by observing the small, correlated effect the waves have on pulse arrival times at Earth. This effect has conventionally been evaluated assuming the gravitational wave phasefronts are planar acro ss the array, an assumption that is valid only for sources at distances $Rgg2pi{}L^2/lambda$, where $L$ is physical extent of the array and $lambda$ the radiation wavelength. In the case of pulsar timing arrays (PTAs) the array size is of order the pulsar-Earth distance (kpc) and $lambda$ is of order pc. Correspondingly, for point gravitational wave sources closer than $sim100$~Mpc the PTA response is sensitive to the source parallax across the pulsar-Earth baseline. Here we evaluate the PTA response to gravitational wave point sources including the important wavefront curvature effects. Taking the wavefront curvature into account the relative amplitude and phase of the timing residuals associated with a collection of pulsars allows us to measure the distance to, and sky position of, the source.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا