ترغب بنشر مسار تعليمي؟ اضغط هنا

89 - Lawrence Sromovsky 2015
Raman scattering by H$_2$ in Neptunes atmosphere has significant effects on its reflectivity for $lambda <$ 0.5 $mu$m, producing baseline decreases of $sim$ 20% in a clear atmosphere and $sim$ 10% in a hazy atmosphere. Here we present the first radia tion transfer algorithm that includes both polarization and Raman scattering and facilitates computation of spatially resolved spectra. New calculations show that Cochran and Traftons (1978, Astrophys. J. 219, 756-762) suggestion that light reflected in the deep CH$_4$ bands is mainly Raman scattered is not valid for current estimates of the CH$_4$vertical distribution, which implies only a 4% Raman contribution. Comparisons with IUE, HST, and groundbased observations confirm that high altitude haze absorption is reducing Neptunes geometric albedo by $sim$6% in the 0.22-0.26 $mu$m range and by $sim$13% in the 0.35-0.45 $mu$m range. We used accurate calculations to evaluate several approximations of Raman scattering. The Karkoschka (1994, Icarus 111, 174-192) method of removing Raman effects from observed spectra is shown to have limited applicability and to undercorrect the depths of weak CH$_4$ absorption bands. The Wallace (1972, Astrophys. J. 176, 249-257) approximation produces geometric albedo values $sim$5% low as originally proposed, but can be much improved by adding scattering contributions from the vibrational transition. The Pollack et al. (1986, Icarus 65, 442-466) approximation is inaccurate and unstable, but can also be improved greatly by several simple modifications. A new approximation provides low errors for zenith angles below 70deg in a clear atmosphere, although intermediate clouds present problems at longer wavelengths.
The Cassini flyby of Jupiter in 2000 provided spatially resolved spectra of Jupiters atmosphere using the Visual and Infrared Mapping Spectrometer (VIMS). These spectra contain a strong absorption at wavelengths from about 2.9 $mu$m to 3.1 $mu$m, pre viously noticed in a 3-$mu$m spectrum obtained by the Infrared Space Observatory (ISO) in 1996. While Brooke et al. (1998, Icarus 136, 1-13) were able to fit the ISO spectrum very well using ammonia ice as the sole source of particulate absorption, Sromovsky and Fry (2010, Icarus 210, 211-229), using significantly revised NH$_3$ gas absorption models, showed that ammonium hydrosulfide (NH$_4$SH) provided a better fit to the ISO spectrum than NH$_3$ , but that the best fit was obtained when both NH$_3$ and NH$_4$SH were present. Although the large FOV of the ISO instrument precluded identification of the spatial distribution of these two components, the VIMS spectra at low and intermediate phase angles show that 3-$mu$m absorption is present in zones and belts, in every region investigated, and both low- and high-opacity samples are best fit with a combination of NH$_4$SH and NH$_3$ particles at all locations. The best fits are obtained with a layer of small ammonia-coated particles ($rsim0.3$ $mu$m) overlying but often close to an optically thicker but still modest layer of much larger NH$_4$SH particles ($rsim 10$ $mu$m), with a deeper optically thicker layer, which might also be composed of NH$_4$SH. Although these fits put NH$_3$ ice at pressures less than 500 mb, this is not inconsistent with the lack of prominent NH$_3$ features in Jupiters longwave spectrum because the reflectivity of the core particles strongly suppresses the NH$_3$ absorption features, at both near-IR and thermal wavelengths.
Near-infrared adaptive optics imaging of Uranus by the Keck 2 telescope during 2003 and 2004 has revealed numerous discrete cloud features, 70 of which were used to extend the zonal wind profile of Uranus up to 60deg N. We confirmed the presence of a north-south asymmetry in the circulation (Karkoschka, Science 111, 570-572, 1998), and improved its characterization. We found no clear indication of long term change in wind speed between 1986 and 2004, although results of Hammel et al. (2001, Icarus 153, 229-235) based on 2001 HST and Keck observations average ~10 m/s less westward than earlier and later results, and 2003 observations by Hammel et al. (2005, Icarus 175, 534-545) show increased wind speeds near 45deg N, which we dont see in our 2003-2004 observations. We observed a wide range of lifetimes for discrete cloud features: some features evolve within ~1 hour, many have persisted at least one month, and one feature near 34deg S (termed S34) seems to have persisted for nearly two decades, a conclusion derived with the help of Voyager 2 and HST observations. S34 oscillates in latitude between 32deg S and 36.5deg S, with a period of $sim$1000 days, which may be a result of a non-barotropic Rossby wave. It also varied its longitudinal drift rate between -20deg /day and -31deg /day in approximate accord with the latitudinal gradient in the zonal wind profile, exhibiting behavior similar to that of the DS2 feature observed on Neptune (Sromovsky et al., Icarus 105, 110-141, 1993). S34 also exhibits a superimposed rapid oscillation with an amplitude of 0.57deg in latitude and period of 0.7 days, which is approximately consistent with an inertial oscillation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا