ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider an interactive multiview video streaming (IMVS) system where clients select their preferred viewpoint in a given navigation window. To provide high quality IMVS, many high quality views should be transmitted to the clients. However, this is not always possible due to the limited and heterogeneous capabilities of the clients. In this paper, we propose a novel adaptive IMVS solution based on a layered multiview representation where camera views are organized into layered subsets to match the different clients constraints. We formulate an optimization problem for the joint selection of the views subsets and their encoding rates. Then, we propose an optimal and a reduced computational complexity greedy algorithms, both based on dynamic-programming. Simulation results show the good performance of our novel algorithms compared to a baseline algorithm, proving that an effective IMVS adaptive solution should consider the scene content and the client capabilities and their preferences in navigation.
Due to the presence of buffers in the inner network nodes, each congestion event leads to buffer queueing and thus to an increasing end-to-end delay. In the case of delay sensitive applications, a large delay might not be acceptable and a solution to properly manage congestion events while maintaining a low end-to-end delay is required. Delay-based congestion algorithms are a viable solution as they target to limit the experienced end-to-end delay. Unfortunately, they do not perform well when sharing the bandwidth with congestion control algorithms not regulated by delay constraints (e.g., loss-based algorithms). Our target is to fill this gap, proposing a novel congestion control algorithm for delay-constrained communication over best effort packet switched networks. The proposed algorithm is able to maintain a bounded queueing delay when competing with other delay-based flows, and avoid starvation when competing with loss-based flows. We adopt the well-known price-based distributed mechanism as congestion control, but: 1) we introduce a novel non-linear mapping between the experienced delay and the price function and 2) we combine both delay and loss information into a single price term based on packet interarrival measurements. We then provide a stability analysis for our novel algorithm and we show its performance in the simulation results carried out in the NS3 framework. Simulation results demonstrate that the proposed algorithm is able to: achieve good intra-protocol fairness properties, control efficiently the end-to-end delay, and finally, protect the flow from starvation when other flows cause the queuing delay to grow excessively.
Motivated by the analogy between successive interference cancellation and iterative belief-propagation on erasure channels, irregular repetition slotted ALOHA (IRSA) strategies have received a lot of attention in the design of medium access control p rotocols. The IRSA schemes have been mostly analyzed for theoretical scenarios for homogenous sources, where they are shown to substantially improve the system performance compared to classical slotted ALOHA protocols. In this work, we consider generic systems where sources in different importance classes compete for a common channel. We propose a new prioritized IRSA algorithm and derive the probability to correctly resolve collisions for data from each source class. We then make use of our theoretical analysis to formulate a new optimization problem for selecting the transmission strategies of heterogenous sources. We optimize both the replication probability per class and the source rate per class, in such a way that the overall system utility is maximized. We then propose a heuristic-based algorithm for the selection of the transmission strategy, which is built on intrinsic characteristics of the iterative decoding methods adopted for recovering from collisions. Experimental results validate the accuracy of the theoretical study and show the gain of well-chosen prioritized transmission strategies for transmission of data from heterogenous classes over shared wireless channels.
In multiview video systems, multiple cameras generally acquire the same scene from different perspectives, such that users have the possibility to select their preferred viewpoint. This results in large amounts of highly redundant data, which needs t o be properly handled during encoding and transmission over resource-constrained channels. In this work, we study coding and transmission strategies in multicamera systems, where correlated sources send data through a bottleneck channel to a central server, which eventually transmits views to different interactive users. We propose a dynamic correlation-aware packet scheduling optimization under delay, bandwidth, and interactivity constraints. The optimization relies both on a novel rate-distortion model, which captures the importance of each view in the 3D scene reconstruction, and on an objective function that optimizes resources based on a client navigation model. The latter takes into account the distortion experienced by interactive clients as well as the distortion variations that might be observed by clients during multiview navigation. We solve the scheduling problem with a novel trellis-based solution, which permits to formally decompose the multivariate optimization problem thereby significantly reducing the computation complexity. Simulation results show the gain of the proposed algorithm compared to baseline scheduling policies. More in details, we show the gain offered by our dynamic scheduling policy compared to static camera allocation strategies and to schemes with constant coding strategies. Finally, we show that the best scheduling policy consistently adapts to the most likely user navigation path and that it minimizes distortion variations that can be very disturbing for users in traditional navigation systems.
Adaptive streaming addresses the increasing and heterogenous demand of multimedia content over the Internet by offering several encod
98 - Laura Toni , Thomas Maugey , 2012
In multiview applications, multiple cameras acquire the same scene from different viewpoints and generally produce correlated video streams. This results in large amounts of highly redundant data. In order to save resources, it is critical to handle properly this correlation during encoding and transmission of the multiview data. In this work, we propose a correlation-aware packet scheduling algorithm for multi-camera networks, where information from all cameras are transmitted over a bottleneck channel to clients that reconstruct the multiview images. The scheduling algorithm relies on a new rate-distortion model that captures the importance of each view in the scene reconstruction. We propose a problem formulation for the optimization of the packet scheduling policies, which adapt to variations in the scene content. Then, we design a low complexity scheduling algorithm based on a trellis search that selects the subset of candidate packets to be transmitted towards effective multiview reconstruction at clients. Extensive simulation results confirm the gain of our scheduling algorithm when inter-source correlation information is used in the scheduler, compared to scheduling policies with no information about the correlation or non-adaptive scheduling policies. We finally show that increasing the optimization horizon in the packet scheduling algorithm improves the transmission performance, especially in scenarios where the level of correlation rapidly varies with time.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا