ترغب بنشر مسار تعليمي؟ اضغط هنا

The Next Generation Virgo Cluster Survey has recently determined the luminosity function of galaxies in the core of the Virgo cluster down to unprecedented magnitude and surface brightness limits. Comparing simulations of cluster formation to the der ived central stellar mass function, we attempt to estimate the stellar-to-halo-mass ratio (SHMR) for dwarf galaxies, as it would have been before they fell into the cluster. This approach ignores several details and complications, e.g., the contribution of ongoing star formation to the present-day stellar mass of cluster members, and the effects of adiabatic contraction and/or violent feedback on the subhalo and cluster potentials. The final results are startlingly simple, however; we find that the trends in the SHMR determined previously for bright galaxies appear to extend down in a scale-invariant way to the faintest objects detected in the survey. These results extend measurements of the formation efficiency of field galaxies by two decades in halo mass, or five decades in stellar mass, down to some of the least massive dwarf galaxies known, with stellar masses of $sim 10^5 M_odot$.
We report the discovery of three large (R29 >~ 1 arcminute) extremely low surface brightness (mu_(V,0) ~ 27.0) galaxies identified using our deep, wide-field imaging of the Virgo Cluster from the Burrell Schmidt telescope. Complementary data from the Next Generation Virgo Cluster Survey do not resolve red giant branch stars in these objects down to i=24, yielding a lower distance limit of 2.5 Mpc. At the Virgo distance, these objects have half-light radii 3-10 kpc and luminosities L_V=2-9x10^7 Lsun. These galaxies are comparable in size but lower in surface brightness than the large ultradiffuse LSB galaxies recently identified in the Coma cluster, and are located well within Virgos virial radius; two are projected directly on the cluster core. One object appears to be a nucleated LSB in the process of being tidally stripped to form a new Virgo ultracompact dwarf galaxy. The others show no sign of tidal disruption, despite the fact that such objects should be most vulnerable to tidal destruction in the cluster environment. The relative proximity of Virgo makes these objects amenable to detailed studies of their structural properties and stellar populations. They thus provide an important new window onto the connection between cluster environment and galaxy evolution at the extremes.
We analyse HST surface brightness profiles for 143 early-type galaxies in the Virgo and Fornax Clusters. Sersic models provide accurate descriptions of the global profiles with a notable exception: the observed profiles deviate systematically inside a characteristic break radius of R_b ~ 0.02R_e where R_e is the effective radius of the galaxy. The sense of the deviation is such that bright galaxies (M_B < -20) typically show central light deficits with respect to the inward extrapolation of the Sersic model, while the great majority of low- and intermediate-luminosity galaxies (-19.5 < M_B < -15) show central light excesses; galaxies occupying a narrow range of intermediate luminosities (-20 < M_B < -19.5) are usually well fitted by Sersic models over all radii. The slopes of the central surface brightness profiles, when measured at fixed fractions of R_e, vary smoothly as a function of galaxy luminosity in a manner that depends sensitively on the choice of measurement radius. We show that a recent claim of strong bimodality in slope is likely an artifact of the galaxy selection function used in that study. To provide a more robust characterization of the inner regions of galaxies, we introduce a parameter that describes the central luminosity deficit or excess relative to the inward extrapolation of the outer Sersic model. We find that this parameter varies smoothly over the range of ~ 720 in blue luminosity spanned by the Virgo and Fornax sample galaxies, with no evidence for a dichotomy. We argue that the central light excesses (nuclei) in M_B > -19 galaxies may be the analogs of the dense central cores that are predicted by some numerical simulations to form via gas inflows. (ABRIDGED)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا