ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurements on classical systems are usually idealized and assumed to have infinite precision. In practice, however, any measurement has a finite resolution. We investigate the theory of non-ideal measurements in classical mechanics using a measurem ent probe with finite resolution. We use the von Neumann interaction model to represent the interaction between system and probe. We find that in reality classical systems are affected by measurement in a similar manner as quantum systems. In particular, we derive classical equivalents of Luders rule, the collapse postulate, and the Lindblad equation.
Weak values are usually associated with weak measurements of an observable on a pre- and post-selected ensemble. We show that more generally, weak values are proportional to the correlation between two pointers in a successive measurement. We show th at this generalized concept of weak measurements displays a symmetry under reversal of measurement order. We show that the conditions for order symmetry are the same as in classical mechanics. We also find that the imaginary part of the weak value has a counterpart in classical mechanics. This scheme suggests new experimental possibilities.
We study successive measurements of two observables using von Neumanns measurement model. The two-pointer correlation for arbitrary coupling strength allows retrieving the initial system state. We recover Luders rule, the Wigner formula and the Kirkw ood-Dirac distribution in the appropriate limits of the coupling strength.
66 - Lars M. Johansen 2008
From an analysis of projective measurements, it is shown that the Wigner rule is the unique operational quasi-probability for the post-measurement state. A unique pre-measurement quasi-probability is derived from a principle of invariance of measurem ent disturbance under orthogonal projector complementation. Physical arguments for this principle are given. The informationally complete complex extension of the quasi-probability is also derived. Nonclassicality of this quasi-probability is due to measurement disturbance. The same quasi-probability follows from weak measurements.
81 - Lars M. Johansen 2007
We show that a quantum state may be represented as the sum of a joint probability and a complex quantum modification term. The joint probability and the modification term can both be observed in successive projective measurements. The complex modific ation term is a measure of measurement disturbance. A selective phase rotation is needed to obtain the imaginary part. This leads to a complex quasiprobability, the Kirkwood distribution. We show that the Kirkwood distribution contains full information about the state if the two observables are maximal and complementary. The Kirkwood distribution gives a new picture of state reduction. In a nonselective measurement, the modification term vanishes. A selective measurement leads to a quantum state as a nonnegative conditional probability. We demonstrate the special significance of the Schwinger basis.
86 - Lars M. Johansen 2007
I propose a scheme for reconstructing the weak value of an observable without the need for weak measurements. The post-selection in weak measurements is replaced by an initial projector measurement. The observable can be measured using any form of in teraction, including projective measurements. The reconstruction is effected by measuring the change in the expectation value of the observable due to the projector measurement. The weak value may take nonclassical values if the projector measurement disturbs the expectation value of the observable.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا