ترغب بنشر مسار تعليمي؟ اضغط هنا

By examining the locations of central black holes in two elliptical galaxies, M,32 and M,87, we derive constraints on the violation of the strong equivalence principle for purely gravitational objects, i.e. black holes, of less than about two-thirds, $eta_N<0.68$ from the gravitational interaction of M,87 with its neighbours in the Virgo cluster. Although M,32 appears to be a good candidate for this technique, the high concentration of stars near its centre substantially weakens the constraints. On the other hand, if a central black hole is found in NGC 205 or one of the other satellite ellipticals of M,31, substantially better constraints could be obtained. In all cases the constraints could improve dramatically with better astrometry.
We compare the efficiency of moments and Minkowski functionals (MFs) in constraining the subset of cosmological parameters (Omega_m,w,sigma_8) using simulated weak lensing convergence maps. We study an analytic perturbative expansion of the MFs in te rms of the moments of the convergence field and of its spatial derivatives. We show that this perturbation series breaks down on smoothing scales below 5, while it shows a good degree of convergence on larger scales (15). Most of the cosmological distinguishing power is lost when the maps are smoothed on these larger scales. We also show that, on scales comparable to 1, where the perturbation series does not converge, cosmological constraints obtained from the MFs are approximately 1.5-2 times better than the ones obtained from the first few moments of the convergence distribution --- provided that the latter include spatial information, either from moments of gradients, or by combining multiple smoothing scales. Including either a set of these moments or the MFs can significantly tighten constraints on cosmological parameters, compared to the conventional method of using the power spectrum alone.
We derive consistency relations for correlators of scalar cosmological perturbations which hold in the squeezed limit in which one or more of the external momenta become soft. Our results are formulated as relations between suitably defined one-parti cle irreducible N-point and (N-1)-point functions that follow from residual spatial conformal diffeomorphisms of the unitary gauge Lagrangian. As such, some of these relations are exact to all orders in perturbation theory, and do not rely on approximate deSitter invariance or other dynamical assumptions (e.g., properties of the operator product expansion or the behavior of modes at horizon crossing). The consistency relations apply model-independently to cosmological scenarios where the time evolution is driven by a single scalar field. Besides reproducing the known results for single-field inflation in the slow roll limit, we verify that our consistency relations hold more generally, for instance in ghost condensate models in flat space. We comment on possible extensions of our results to multi-field models.
108 - Lam Hui , Sean T. McWilliams , 2012
Gravitational waves at suitable frequencies can resonantly interact with a binary system, inducing changes to its orbit. A stochastic gravitational-wave background causes the orbital elements of the binary to execute a classic random walk, with the v ariance of orbital elements growing with time. The lack of such a random walk in binaries that have been monitored with high precision over long time-scales can thus be used to place an upper bound on the gravitational-wave background. Using periastron time data from the Hulse-Taylor binary pulsar spanning ~30 years, we obtain a bound of h_c < 7.9*10^(-14) at ~10^(-4) Hz, where h_c is the strain amplitude per logarithmic frequency interval. Our constraint complements those from pulsar timing arrays, which probe much lower frequencies, and ground-based gravitational-wave observations, which probe much higher frequencies. Interesting sources in our frequency band, which overlaps the lower sensitive frequencies of proposed space-based observatories, include white-dwarf/supermassive black-hole binaries in the early/late stages of inspiral, and TeV scale preheating or phase transitions. The bound improves as (time span)^(-2) and (sampling rate)^(-1/2). The Hulse-Taylor constraint can be improved to ~3.8*10^(-15) with a suitable observational campaign over the next decade. Our approach can also be applied to other binaries, including (with suitable care) the Earth-Moon system, to obtain constraints at different frequencies. The observation of additional binary pulsars with the SKA could reach a sensitivity of h_c ~ 3*10^(-17).
We present an analysis of peculiar velocities and their effect on supernova cosmology. In particular, we study (a) the corrections due to our own motion, (b) the effects of correlations in peculiar velocities induced by large-scale structure, and (c) uncertainties arising from a possible local under- or over-density. For all of these effects we present a case study of their impact on the cosmology derived by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). Correcting supernova redshifts for the CMB dipole slightly over-corrects nearby supernovae that share some of our local motion. We show that while neglecting the CMB dipole would cause a shift in the derived equation of state of Delta w ~ 0.04 (at fixed matter density) the additional local-motion correction is currently negligible (Delta w<0.01). We use a covariance-matrix approach to statistically account for correlated peculiar velocities. This down-weights nearby supernovae and effectively acts as a graduated version of the usual sharp low-redshift cut. Neglecting coherent velocities in the current sample causes a systematic shift of ~2% in the preferred value of w and will therefore have to be considered carefully when future surveys aim for percent-level accuracy. Finally, we perform n-body simulations to estimate the likely magnitude of any local density fluctuation (monopole) and estimate the impact as a function of the low-redshift cutoff. We see that for this aspect the low-z cutoff of z=0.02 is well-justified theoretically, but that living in a putative local density fluctuation leaves an indelible imprint on the magnitude-redshift relation.
Theories that attempt to explain the observed cosmic acceleration by modifying general relativity all introduce a new scalar degree of freedom that is active on large scales, but is screened on small scales to match experiments. We show that if such screening occurrs via the chameleon mechanism such as in f(R), it is possible to have order one violation of the equivalence principle, despite the absence of explicit violation in the microscopic action. Namely, extended objects such as galaxies or constituents thereof do not all fall at the same rate. The chameleon mechanism can screen the scalar charge for large objects but not for small ones (large/small is defined by the gravitational potential and controlled by the scalar coupling). This leads to order one fluctuations in the inertial to gravitational mass ratio. In Jordan frame, it is no longer true that all objects move on geodesics. In contrast, if the scalar screening occurrs via strong coupling, such as in the DGP braneworld model, equivalence principle violation occurrs at a much reduced level. We propose several observational tests of the chameleon mechanism: 1. small galaxies should fall faster than large galaxies, even when dynamical friction is negligible; 2. voids defined by small galaxies would be larger compared to standard expectations; 3. stars and diffuse gas in small galaxies should have different velocities, even on the same orbits; 4. lensing and dynamical mass estimates should agree for large galaxies but disagree for small ones. We discuss possible pitfalls in some of these tests. The cleanest is the third one where mass estimate from HI rotational velocity could exceed that from stars by 30 % or more. To avoid blanket screening of all objects, the most promising place to look is in voids.
Fry (1996) showed that galaxy bias has the tendency to evolve towards unity, i.e. in the long run, the galaxy distribution tends to trace that of matter. Generalizing slightly Frys reasoning, we show that his conclusion remains valid in theories of m odified gravity (or equivalently, complex clustered dark energy). This is not surprising: as long as both galaxies and matter are subject to the same force, dynamics would drive them towards tracing each other. This holds, for instance, in theories where both galaxies and matter move on geodesics. This relaxation of bias towards unity is tempered by cosmic acceleration, however: the bias tends towards unity but does not quite make it, unless the formation bias were close to unity. Our argument is extended in a straightforward manner to the case of a stochastic or nonlinear bias. An important corollary is that dynamical evolution could imprint a scale dependence on the large scale galaxy bias. This is especially pronounced if non-standard gravity introduces new scales to the problem: the bias at different scales relaxes at different rates, the larger scales generally more slowly and retaining a longer memory of the initial bias. A consistency test of the current (general relativity + uniform dark energy) paradigm is therefore to look for departure from a scale independent bias on large scales. A simple way is to measure the relative bias of different populations of galaxies which are at different stages of bias relaxation. Lastly, we comment on the possibility of directly testing the Poisson equation on cosmological scales, as opposed to indirectly through the growth factor.
It is well known gravitational lensing, mainly via magnification bias, modifies the observed galaxy/quasar clustering. Such discussions have largely focused on the 2D angular correlation. Here and in a companion paper (Paper II) we explore how magnif ication bias distorts the 3D correlation function and power spectrum, as first considered by Matsubara. The interesting point is: the distortion is anisotropic. Magnification bias preferentially enhances the observed correlation in the line-of-sight (LOS) orientation, especially on large scales. For example at LOS separation of ~100 Mpc/h, where the intrinsic galaxy-galaxy correlation is rather weak, the observed correlation can be enhanced by lensing by a factor of a few, even at a modest redshift of z ~ 0.35. The opportunity: this lensing anisotropy is distinctive, making it possible to separately measure the galaxy-galaxy, galaxy-magnification and magnification-magnification correlations, without measuring galaxy shapes. The anisotropy is distinguishable from the well known distortion due to peculiar motions, as will be discussed in Paper II. The challenge: the magnification distortion of the galaxy correlation must be accounted for in interpreting data as precision improves. For instance, the ~100 Mpc/h baryon acoustic oscillation scale in the correlation function is shifted by up to ~3% in the LOS orientation, and up to ~0.6% in the monopole, depending on the galaxy bias, redshift and number count slope. The corresponding shifts in the inferred Hubble parameter and angular diameter distance, if ignored, could significantly bias measurements of the dark energy equation of state. Lastly, magnification distortion offers a plausible explanation for the well known excess correlations seen in pencil beam surveys.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا