ترغب بنشر مسار تعليمي؟ اضغط هنا

Let $K$ be an isotropic symmetric convex body in ${mathbb R}^n$. We show that a subspace $Fin G_{n,n-k}$ of codimension $k=gamma n$, where $gammain (1/sqrt{n},1)$, satisfies $$Kcap Fsubseteq frac{c}{gamma }sqrt{n}L_K (B_2^ncap F)$$ with probability g reater than $1-exp (-sqrt{n})$. Using a different method we study the same question for the $L_q$-centroid bodies $Z_q(mu )$ of an isotropic log-concave probability measure $mu $ on ${mathbb R}^n$. For every $1leq qleq n$ and $gammain (0,1)$ we show that a random subspace $Fin G_{n,(1-gamma )n}$ satisfies $Z_q(mu )cap Fsubseteq c_2(gamma )sqrt{q},B_2^ncap F$. We also give bounds on the diameter of random projections of $Z_q(mu )$ and using them we deduce that if $K$ is an isotropic convex body in ${mathbb R}^n$ then for a random subspace $F$ of dimension $(log n)^4$ one has that all directions in $F$ are sub-Gaussian with constant $O(log^2n)$.
Let $x_1,ldots ,x_N$ be independent random points distributed according to an isotropic log-concave measure $mu $ on ${mathbb R}^n$, and consider the random polytope $$K_N:={rm conv}{ pm x_1,ldots ,pm x_N}.$$ We provide sharp estimates for the querma ss{}integrals and other geometric parameters of $K_N$ in the range $cnls Nlsexp (n)$; these complement previous results from cite{DGT1} and cite{DGT} that were given for the range $cnls Nlsexp (sqrt{n})$. One of the basic new ingredients in our work is a recent result of E.~Milman that determines the mean width of the centroid body $Z_q(mu )$ of $mu $ for all $1ls qls n$.
We prove that there exists an absolute constant $alpha >1$ with the following property: if $K$ is a convex body in ${mathbb R}^n$ whose center of mass is at the origin, then a random subset $Xsubset K$ of cardinality ${rm card}(X)=lceilalpha nrceil $ satisfies with probability greater than $1-e^{-n}$ {Ksubseteq c_1n,{mathrm conv}(X),} where $c_1>0$ is an absolute constant. As an application we show that the vertex index of any convex body $K$ in ${mathbb R}^n$ is bounded by $c_2n^2$, where $c_2>0$ is an absolute constant, thus extending an estimate of Bezdek and Litvak for the symmetric case.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا