ترغب بنشر مسار تعليمي؟ اضغط هنا

45 - L. Celona 2014
The Electron Cyclotron Resonance Ion Source (ECRIS) is nowadays the most effective device that can feed particle accelerators in a continuous and reliable way, providing high-current beams of low- and medium-charge-state ions and relatively intense c urrents for highly charged ions. The ECRIS is an important tool for research with ion beams (in surface, atomic, and nuclear science) while, on the other hand, it implies plasma under extreme conditions and thus constitutes an object of scientific interest in itself. The fundamental aspect of the coupling between the electromagnetic wave and the plasma is hereinafter treated together with some variations to the classical ECR heating mechanism, with particular attention being paid to the frequency tuning effect and two-frequency heating. Considerations of electron and ion dynamics will be presented together with some recent observations connecting the beam shape with the frequency of the electromagnetic wave feeding the cavity. The future challenges of higher-charge states, high-charge breeding efficiency, and high absolute ionization efficiency also call for the exploration of new heating schemes and synergy between experiments and modelling. Some results concerning the investigation of innovative mechanisms of plasma ignition based on upper hybrid resonance will be described.
65 - L. Celona 2014
This chapter describes the basic principles, design features and characteristics of microwave discharge ion sources. A suitable source for the production of intense beams for high-power accelerators must satisfy the requirements of high brightness, s tability and reliability. The 2.45 GHz off-resonance microwave discharge sources are ideal devices to generate the required beams, as they produce multimilliampere beams of protons, deuterons and singly charged ions. A description of different technical designs will be given, analysing their performance, with particular attention being paid to the quality of the beam, especially in terms of its emittance.
68 - Eric Bonnet 2013
We present an analysis of multifragmentation events observed in central Xe+Sn reactions at Fermi energies. Performing a comparison between the predictions of the Stochastic Mean Field (SMF) transport model and experimental data, we investigate the im pact of the compression-expansion dynamics on the properties of the final reaction products. We show that the amount of radial collective expansion, which characterizes the dynamical stage of the reaction, influences directly the onset of multifragmentation and the kinematic properties of multifragmentation events. For the same set of events we also undertake a shape analysis in momentum space, looking at the degree of stopping reached in the collision, as proposed in recent experimental studies. We show that full stopping is achieved for the most central collisions at Fermi energies. However, considering the same central event selection as in the experimental data, we observe a similar behavior of the stopping power with the beam energy, which can be associated with a change of the fragmentation mechanism, from statistical to prompt fragment emission.
76 - E. Galichet (IPNO , Cnam , LNS 2008
We study isospin effects in semi-peripheral collisions above the Fermi energy by considering the symmetric $^{58}Ni$ + $^{58}Ni$ and the asymmetric reactions $^{58}Ni$ + $^{197}Au$ over the incident energy range 52-74 A MeV. A microscopic transport m odel with two different parameterizations of the symmetry energy term is used to investigate the isotopic content of pre-equilibrium emission and the N/Z diffusion process. Simulations are also compared to experimental data obtained with the INDRA array and bring information on the degree of isospin equilibration observed in Ni + Au collisions. A better overall agreement between data and simulations is obtained when using a symmetry term which linearly increases with nuclear density.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا