ترغب بنشر مسار تعليمي؟ اضغط هنا

111 - X.B. Ma , F.Lu , L.Z. Wang 2014
Reactor antineutrino experiment are used to study neutrino oscillation, search for signatures of nonstandard neutrino interaction, and monitor reactor operation for safeguard application. Reactor simulation is an important source of uncertainties for a reactor neutrino experiment. Commercial code is used for reactor simulation to evaluate fission fraction in Daya Bay neutrino experiment, but the source code doesnt open to our researcher results from commercial secret. In this study, The open source code DRAGON was improved to calculate the fission rates of the four most important isotopes in fissions, $^{235}$U,$^{238}$U,$^{239}$Pu and $^{241}$Pu, and then was validated for PWRs using the Takahama-3 benchmark. The fission fraction results are consistent with those of MITs results. Then, fission fraction of Daya Bay reactor core was calculated by using improved DRAGON code, and the fission fraction calculated by DRAGON agreed well with these calculated by SCIENCE. The average deviation less than 5% for all the four isotopes. The correlation coefficient matrix between $^{235}$U,$^{238}$U,$^{239}$Pu and $^{241}$Pu were also studied using DRAGON, and then the uncertainty of the antineutrino flux by the fission fraction was calculated by using the correlation coefficient matrix. The uncertainty of the antineutrino flux by the fission fraction simulation is 0.6% per core for Daya Bay antineutrino experiment. The uncertainties source of fission fraction calculation need further to be studied in the future.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا