ترغب بنشر مسار تعليمي؟ اضغط هنا

286 - P. P. Kong , F. Sun , L.Y. Xing 2014
Recently, A2B3 type strong spin orbital coupling compounds such as Bi2Te3, Bi2Se3 and Sb2Te3 were theoretically predicated to be topological insulators and demonstrated through experimental efforts. The counterpart compound Sb2Se3 on the other hand w as found to be topological trivial, but further theoretical studies indicated that the pressure might induce Sb2Se3 into a topological nontrivial state. Here, we report on the discovery of superconductivity in Sb2Se3 single crystal induced via pressure. Our experiments indicated that Sb2Se3 became superconductive at high pressures above 10 GPa proceeded by a pressure induced insulator to metal like transition at ~3 GPa which should be related to the topological quantum transition. The superconducting transition temperature (TC) increased to around 8.0 K with pressure up to 40 GPa while it keeps ambient structure. High pressure Raman revealed that new modes appeared around 10 GPa and 20 GPa, respectively, which correspond to occurrence of superconductivity and to the change of TC slop as the function of high pressure in conjunction with the evolutions of structural parameters at high pressures.
268 - L.Y. Xing , H. Miao , X.C. Wang 2014
The Cu substitution effect on the superconductivity of LiFeAs has been studied in comparison with Co/Ni substitution. It is found that the shrinking rate of the lattice parameter c for Cu substitution is much smaller than that of Co/Ni substitution. This is in conjugation with the observation of ARPES that shows almost the same electron and hole Fermi surfaces (FSs) size for undoped and Cu substituted LiFeAs sample except for a very small hole band sinking below Fermi level with doping, indicating little doping effect at Fermi surface by Cu substitution, in sharp contrast to the much effective carrier doping effect by Ni or Co.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا