ترغب بنشر مسار تعليمي؟ اضغط هنا

White dwarfs are the fossils left by the evolution of low-and intermediate-mass stars, and have very long evolutionary timescales. This allows us to use them to explore the properties of old populations, like the Galactic halo. We present a populatio n synthesis study of the luminosity function of halo white dwarfs, aimed at investigating which information can be derived from the currently available observed data. We employ an up-to-date population synthesis code based on Monte Carlo techniques, that incorporates the most recent and reliable cooling sequences for metal poor progenitors as well as an accurate modeling of the observational biases. We find that because the observed sample of halo white dwarfs is restricted to the brightest stars only the hot branch of the white dwarf luminosity function can be used for such purposes, and that its shape function is almost insensitive to the most relevant inputs, like the adopted cooling sequences, the initial mass function, the density profile of the stellar spheroid, or the adopted fraction of unresolved binaries. Moreover, since the cut-off of the observed luminosity has not been yet determined only lower limits to the age of the halo population can be placed. We conclude that the current observed sample of the halo white dwarf population is still too small to obtain definite conclusions about the properties of the stellar halo, and the recently computed white dwarf cooling sequences which incorporate residual hydrogen burning should be assessed using metal-poor globular clusters.
Axions are the natural consequence of the introduction of the Peccei-Quinn symmetry to solve the strong CP problem. All the efforts to detect such elusive particles have failed up to now. Nevertheless, it has been recently shown that the luminosity f unction of white dwarfs is best fitted if axions with a mass of a few meV are included in the evolutionary calculations. Our aim is to show that variable white dwarfs can provide additional and independent evidence about the existence of axions. The evolution of a white dwarf is a slow cooling process that translates into a secular increase of the pulsation periods of some variable white dwarfs, the so-called DAV and DBV types. Since axions can freely escape from such stars, their existence would increase the cooling rate and, consequently, the rate of change of the periods as compared with the standard ones. The present values of the rate of change of the pulsation period of G117-B15A are compatible with the existence of axions with the masses suggested by the luminosity function of white dwarfs, in contrast with previous estimations. Furthermore, it is shown that if such axions indeed exist, the drift of the periods of pulsation of DBV stars would be noticeably perturbed.
244 - A. Gautschy , L.G. Althaus 2007
Stars in the narrow mass range of about 2.5 and 3.5 solar masses can develop a thermally unstable He-burning shell during its ignition phase. We study, from the point of view secular stability theory, these so called thermal micropulses and we invest igate their properties; the thermal pulses constitute a convenient conceptual laboratory to look thoroughly into the physical properties of a helium-burning shell during the whole thermally pulsing episode. Linear stability analyses were performed on a large number of 3 solar-mass star models at around the end of their core helium-burning and the beginning of the double-shell burning phase. The stellar models were not assumed to be in thermal equilibrium. The thermal mircopulses, and we conjecture all other thermal pulse episodes encountered by shell-burning stars, can be understood as the nonlinear finite-amplitude realization of an oscillatory secular instability that prevails during the whole thermal pulsing episode. Hence, the cyclic nature of the thermal pulses can be traced back to a linear instability concept.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا