ترغب بنشر مسار تعليمي؟ اضغط هنا

We report extensive spectroscopic and differential photometric BVRI observations of the active, detached, 1.309-day double-lined eclipsing binary IM Vir, composed of a G7-type primary and a K7 secondary. With these observations we derive accurate abs olute masses and radii of M(1) = 0.981 +/- 0.012 M(Sun), M(2) = 0.6644 +/- 0.0048 M(Sun), R(1) = 1.061 +/- 0.016 R(Sun), and R(2) = 0.681 +/- 0.013 R(Sun) for the primary and secondary, with relative errors under 2%. The effective temperatures are 5570 +/- 100 K and 4250 +/- 130 K. The significant difference in mass makes this a favorable case for comparison with stellar evolution theory. We find that both stars are larger than the models predict, by 3.7% for the primary and 7.5% for the secondary, as well as cooler than expected, by 100 K and 150 K, respectively. These discrepancies are in line with previously reported differences in low-mass stars, and are believed to be caused by chromospheric activity, which is not accounted for in current models. The effect is not confined to low-mass stars: the rapidly-rotating primary of IM Vir joins the growing list of objects of near-solar mass (but still with convective envelopes) that show similar anomalies. The comparison with the models suggests an age of 2.4 Gyr for the system, and a metallicity [Fe/H] of approximately -0.3 that is consistent with other indications, but requires confirmation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا