ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the equation of state of neutron matter using a family of unitarity potentials all of which are constructed to have infinite $^1S_0$ scattering lengths $a_s$. For such system, a quantity of much interest is the ratio $xi=E_0/E_0^{free}$ wher e $E_0$ is the true ground-state energy of the system, and $E_0^{free}$ is that for the non-interacting system. In the limit of $a_sto pm infty$, often referred to as the unitary limit, this ratio is expected to approach a universal constant, namely $xisim 0.44(1)$. In the present work we calculate this ratio $xi$ using a family of hard-core square-well potentials whose $a_s$ can be exactly obtained, thus enabling us to have many potentials of different ranges and strengths, all with infinite $a_s$. We have also calculated $xi$ using a unitarity CDBonn potential obtained by slightly scaling its meson parameters. The ratios $xi$ given by these different unitarity potentials are all close to each other and also remarkably close to 0.44, suggesting that the above ratio $xi$ is indifferent to the details of the underlying interactions as long as they have infinite scattering length. A sum-rule and scaling constraint for the renormalized low-momentum interaction in neutron matter at the unitary limit is discussed.
We study the equation of state for symmetric nuclear matter using a ring-diagram approach in which the particle-particle hole-hole ($pphh$) ring diagrams within a momentum model space of decimation scale $Lambda$ are summed to all orders. The calcula tion is carried out using the renormalized low-momentum nucleon-nucleon (NN) interaction $V_{low-k}$, which is obtained from a bare NN potential by integrating out the high-momentum components beyond $Lambda$. The bare NN potentials of CD-Bonn, Nijmegen and Idaho have been employed. The choice of $Lambda$ and its influence on the single particle spectrum are discussed. Ring-diagram correlations at intermediate momenta ($ksimeq$ 2 fm$^{-1}$) are found to be particularly important for nuclear saturation, suggesting the necessity of using a sufficiently large decimation scale so that the above momentum region is not integrated out. Using $V_{low-k}$ with $Lambda sim 3$ fm$^{-1}$, we perform a ring-diagram computation with the above potentials, which all yield saturation energies $E/A$ and Fermi momenta $k_F^{(0)}$ considerably larger than the empirical values. On the other hand, similar computations with the medium-dependent Brown-Rho scaled NN potentials give satisfactory results of $E/A simeq -15$ MeV and $k_F^{(0)}simeq 1.4$ fm$^{-1}$. The effect of this medium dependence is well reproduced by an empirical 3-body force of the Skyrme type.
We study neutron matter at and near the unitary limit using a low-momentum ring diagram approach. By slightly tuning the meson-exchange CD-Bonn potential, neutron-neutron potentials with various $^1S_0$ scattering lengths such as $a_s=-12070fm$ and $ +21fm$ are constructed. Such potentials are renormalized with rigorous procedures to give the corresponding $a_s$-equivalent low-momentum potentials $V_{low-k}$, with which the low-momentum particle-particle hole-hole ring diagrams are summed up to all orders, giving the ground state energy $E_0$ of neutron matter for various scattering lengths. At the limit of $a_sto pm infty$, our calculated ratio of $E_0$ to that of the non-interacting case is found remarkably close to a constant of 0.44 over a wide range of Fermi-momenta. This result reveals an universality that is well consistent with the recent experimental and Monte-Carlo computational study on low-density cold Fermi gas at the unitary limit. The overall behavior of this ratio obtained with various scattering lengths is presented and discussed. Ring-diagram results obtained with $V_{low-k}$ and those with $G$-matrix interactions are compared.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا