ترغب بنشر مسار تعليمي؟ اضغط هنا

The impact of high-speed jets -- dynamic pressure enhancements in the magnetosheath -- on the Earths magnetopause has been observed to trigger local magnetic reconnection. We perform a three-dimensional hybrid simulation to study the magnetosheath an d magnetopause under turbulent conditions using a quasi-radial southward interplanetary magnetic field (IMF). In contrast to quasi-steady reconnection with a strong southward IMF, we show that after the impact of a jet on the magnetopause, the magnetopause moves inwards, the current sheet is compressed and intensified and signatures of local magnetic reconnection are observed, showing similarities to spacecraft measurements
85 - M. Hesse , Y.-H. Liu , L.-J. Chen 2018
We report on computer simulations and analytic theory to provide a self-consistent understanding of the role of the reconnection electric field, which extends substantially beyond the simple change of magnetic connections. Rather, we find that the re connection electric field is essential to maintaining the current density in the diffusion region, which would otherwise be dissipated by a set of processes. Natural candidates for current dissipation are the average convection of current carriers away from the reconnection region by the outflow of accelerated particles, or the average rotation of the current density by the magnetic field reversal in the vicinity. Instead, we show here that the current dissipation is the result of thermal effects, underlying the statistical interaction of current-carrying particles with the adjacent magnetic field. We find that this interaction serves to redirect the directed acceleration of the reconnection electric field to thermal motion. This thermalization manifests itself in form of quasi-viscous terms in the thermal energy balance of the current layer. These quasi-viscous terms act to increase the average thermal energy. Our predictions regarding current and thermal energy balance are readily amenable to exploration in the laboratory or by satellite missions, in particular, by NASAs Magnetospheric Multiscale mission.
Isolated electrostatic structures are observed throughout much of the 4 Re by 19.6 Re Cluster orbit. These structures are observed in the Wideband plasma wave instruments waveform data as bipolar and tripolar pulses. These structures are observed at all of the boundary layers, in the solar wind and magnetosheath, and along auroral field lines at 4.5-6.5 Re. Using the Wideband waveform data from the various Cluster spacecraft we have carried out a survey of the amplitudes and time durations of these structures and how these quantities vary with the local magnetic field strength. Such a survey has not been carried out before, and it reveals certain characteristics of solitary structures in a finite magnetic field, a topic still inadequately addressed by theories. We find that there is a broad range of electric field amplitudes at any specific magnetic field strength, and there is a general trend for the electric field amplitudes to increase as the strength of the magnetic field increases over a range of 5 to 500 nT. We provide a possible explanation for this trend that releates to the structures being Bernstein-Greene-Kruskal mode solitary waves. There is no corresponding dependence of the duration of the structures on the magnetic field strength, although a plot of these two quantities reveals the unexpected result that with the exception of the magnetosheath, all of the time durations for all of the other regions are comparable, wheras the magnetosheath time durations clearly are in a different category of much smaller time duration. We speculate that this implies the structures are much smaller in size.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا