ترغب بنشر مسار تعليمي؟ اضغط هنا

71 - D. Hsieh , Y. Xia , L. Wray 2011
We report high-resolution spin-resolved photoemission spectroscopy (Spin-ARPES) measurements on the parent compound Sb of the first discovered 3D topological insulator Bi{1-x}Sb{x} [D. Hsieh et al., Nature 452, 970 (2008) Submitted 2007]. By modulati ng the incident photon energy, we are able to map both the bulk and (111) surface band structure, from which we directly demonstrate that the surface bands are spin polarized by the spin-orbit interaction and connect the bulk valence and conduction bands in a topologically non-trivial way. A unique asymmetric Dirac surface state gives rise to a $k$-splitting of its spin polarized electronic channels. These results complement our previously published works on this materials class and re-confirm our discovery of first bulk (3D) topological insulator - topological order in bulk solids. [Invited article for NJP-IOP Focus issue on Topological Insulators]
109 - Y. Xia , D. Qian , L. Wray 2009
We report the first photoemission study of Fe$_{1+x}$Te - the host compound of the newly discovered iron-chalcogenide superconductors (maximum T$_c$ $sim$ 27K). Our results reveal a pair of nearly electron-hole compensated Fermi pockets, strong Fermi velocity renormalization and an absence of a spin-density-wave gap. A shadow hole pocket is observed at the X-point of the Brillouin zone which is consistent with a long-range ordered magneto-structural groundstate. No signature of Fermi surface nesting instability associated with Q=($pi$/2, $pi$/2) is observed. Our results collectively reveal that the Fe$_{1+x}$Te series is dramatically different from the high T$_{c}$ pnictides and likely harbor unusual mechanism for superconductivity and magnetic order.
80 - Y. Xia , D. Qian , L. Wray 2009
We report the first photoemission study of Fe1+xTe - the host compound of the newly discovered iron-chalcogenide superconductors. Our results reveal a pair of nearly electron- hole compensated Fermi pockets, strong Fermi velocity renormalization and an absence of a spin-density-wave gap. A shadow hole pocket is observed at the X-point of the Brillouin zone which is consistent with a long-range ordered magneto-structural groundstate. No signature of Fermi surface nesting instability associated with Q= pi(1/2, 1/2) is observed. Our results collectively reveal that the Fe1+xTe series is dramatically different from the undoped phases of the high Tc pnictides and likely harbor unusual mechanism for superconductivity and quantum magnetic order.
101 - D. Hsieh , Y. Xia , L. Wray 2008
Like high Tc cuprates, the newly discovered iron based superconductors lie in close proximity to a magnetically ordered parent phase. However, while the magnetic order in parent cuprates is known to derive from a spin-spin local superexchange interac tion, a plethora of experiments including neutron scattering have so far been unable to conclusively resolve whether a local moment Heisenberg description applies in parent iron based compounds, or whether magnetism arises from a collective SDW order instability. These two alternatives can in principle be distinguished by measuring the low energy momentum-resolved bulk-representative electronic structure of the magnetically ordered phase. Using a combination of polarization dependent ARPES and STM, we have isolated the complete low-lying bulk representative electronic structure of magnetic SrFe2As2 with d-orbital symmetry specificity for the first time. Our results show that while multiple bands with different iron d-orbital character indeed contribute to charge transport, only one pair of bands with opposite mirror symmetries microscopically exhibit an itinerant SDW instability with energy scales on the order of 50 meV. The orbital resolved band topology below T_SDW point uniquely to a nesting driven band hybridization mechanism of the observed antiferromagnetism in the iron pnictides, and is consistent with an unusual anisotropic nodal-density-wave state. In addition, these results place strong constraints on many theories of pnictide superconductivity that require a strict local moment magnetism starting point.
97 - L. Wray , D. Qian , D. Hsieh 2008
We present a systematic angle-resolved photoemission spectroscopic study of the high-Tc superconductor class (Sr/Ba){1-x}(K/Na)xFe2As2. By utilizing a photon-energy-modulation contrast and scattering geometry we report the Fermi surface and the momen tum dependence of the superconducting gap, Delta(k). A prominent quasiparticle dispersion kink reflecting strong scattering processes is observed in a binding-energy range of 25-55 meV in the superconducting state, and the coherence length or the extent of the Cooper pair wave function is found to be about 20-angstrom, which is uncharacteristic of a superconducting phase realized by the BCS-phonon-retardation mechanism. The observed 40 meV kink likely reflects contributions from the frustrated spin excitations and scattering from the soft phonons. Results taken collectively provide direct clues to the nature of the pairing potential including an internal phase-shift factor in the superconducting order parameter which leads to a Brillouin zone node in a strong-coupling setting.
71 - L. Wray , D. Qian , D. Hsieh 2008
We present a systematic photoemission study of the newly discovered high Tc superconductor class (Sr/Ba)1-xKxFe2As2. By utilizing a unique photon energy range and scattering geometry we resolve the details of the single particle dynamics of interacti ng electrons on the central Fermi surfaces of this series which shows overall strong coupling behavior (2D/kBTc = 6). Quasiparticle dispersion kinks are observed in a binding energy range of 15 to 50 meV which matches the magnetic excitation energy scales (parameterized by J1,J2). The size of the Cooper pair wavefunction is found to be less than 20A indicating a short in-plane scale uncharacteristic of a BCS-phonon scenario but suggestive of a phase factor in the global order parameter. The kink likely reflects contributions from the strongly frustrated fluctuating spin excitations and the soft phonons around 20-40 meV. Our results provide important clue to the nature of the pairing potential realized in these superconductors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا