ترغب بنشر مسار تعليمي؟ اضغط هنا

284 - S. Kamio , W. Curdt , L. Teriaca 2010
We aim to find similarities and differences between microflares at coronal bright points found in quiet regions and coronal holes, and to study their relationship with large scale flares. Coronal bright points in quiet regions and in coronal holes we re observed with Hinode/EIS using the same sequence. Microflares associated with bright points are identified from the X-ray lightcurve. The temporal variation of physical properties was traced in the course of microflares. The lightcurves of microflares indicated an impulsive peak at hot emission followed by an enhancement at cool emission, which is compatible with the cooling model of flare loops. The density was found to increase at the rise of the impulsive peak, supporting chromospheric evaporation models. A notable difference is found in the surroundings of microflares; diffuse coronal jets are produced above microflares in coronal holes while coronal dimmings are formed in quiet regions. The microflares associated with bright points share common characteristics to active region flares. The difference in the surroundings of microflares are caused by open and closed configurations of the pre-existing magnetic field.
341 - S. Kamio , W. Curdt , L. Teriaca 2010
We attempt to understand the driving mechanism of a macrospicule and its relationship with a coronal jet. We study the dynamics of a macrospicule and an associated coronal jet captured by multi-spacecraft observations. Doppler velocities both in the macrospicule and the coronal jet are determined by EIS and SUMER spectra. Their temporal evolution is studied using X-ray and He II 304 images. A blueshift of -120+/-15 km/s is detected on one side of the macrospicule, while a redshift of 50+/-6 km/s is found at the base of the other side. The inclination angle of the macrospicule inferred from a stereoscopic analysis with STEREO suggests that the measured Doppler velocities can be attributed to a rotating motion of the macrospicule rather than a radial flow or an expansion. The macrospicule is driven by the unfolding motion of a twisted magnetic flux rope, while the associated X-ray jet is a radial outflow.
To study the dynamics of coronal holes and the role of waves in the acceleration of the solar wind, spectral observations were performed over polar coronal hole regions with the SUMER spectrometer on SoHO and the EIS spectrometer on Hinode. Using the se observations, we aim to detect the presence of propagating waves in the corona and to study their properties. The observations analysed here consist of SUMER spectra of the Ne VIII 770 A line (T = 0.6 MK) and EIS slot images in the Fe XII 195 A line (T = 1.3 MK). Using the wavelet technique, we study line radiance oscillations at different heights from the limb in the polar coronal hole regions. We detect the presence of long period oscillations with periods of 10 to 30 min in polar coronal holes. The oscillations have an amplitude of a few percent in radiance and are not detectable in line-of-sight velocity. From the time distance maps we find evidence for propagating velocities from 75 km/s (Ne VIII) to 125 km/s (Fe XII). These velocities are subsonic and roughly in the same ratio as the respective sound speeds. We interpret the observed propagating oscillations in terms of slow magneto-acoustic waves. These waves can be important for the acceleration of the fast solar wind.
The purpose of this paper is to analyze the variation in the line width with height in the inner corona (region above 1.1 Rsun), by using the spectral data from LASCO-C1 aboard SOHO. We used data acquired at activity minimum (August - October 1996) a nd during the ascending phase of the solar cycle (March 1998). Series of images acquired at different wavelengths across the Fe X 637.6 nm (red) and Fe XIV 530.3 nm (green) coronal lines by LASCO-C1 allowed us to build radiance and width maps of the off-limb solar corona. In 1996, the line width of Fe XIV was roughly constant or increased with height up to around 1.3 Rsun and then it decreased. The Fe X line width increased with height up to the point where the spectra were too noisy to allow line width measurements (around 1.3 Rsun). Fe X showed higher effective temperatures as compared with Fe XIV. In 1998 the line width of Fe XIV was roughly constant with height above the limb (no Fe X data available).
We study the dynamics and evolution of a C2.3 two-ribbon flare, developed on 2002 August 11, during the impulsive and the long gradual phase. To this end we obtained multiwavelength observations using the CDS spectrometer aboard SOHO, facilities at t he NSO/Sacramento Peak, and the TRACE and RHESSI spacecrafts. CDS spectroheliograms in the Fe XIX, Fe XVI, O V and He I lines allows us to determine the velocity field at different heights/temperatures during the flare and to compare them with the chromospheric velocity fields deduced from H alpha image differences. TRACE images in the 17.1 nm band greatly help in determining the morphology and the evolution of the flaring structures. During the impulsive phase a strong blue-shifted Fe XIX component (-200 km/s) is observed at the footpoints of the flaring loop system, together with a red-shifted emission of O V and He I lines (20 km/s). In one footpoint simultaneous H alpha data are also available and we find, at the same time and location, downflows with an inferred velocity between 4 and 10 km/s. We also verify that the instantaneous momenta of the oppositely directed flows detected in Fe XIX and H alpha are equal within one order of magnitude. These signatures are in general agreement with the scenario of explosive chromospheric evaporation. Combining RHESSI and CDS data after the coronal upflows have ceased, we prove that, independently from the filling factor, an essential contribution to the density of the post-flare loop system is supplied from evaporated chromospheric material. Finally, we consider the cooling of this loop system, that becomes successively visible in progressively colder signatures during the gradual phase. We show that the observed cooling behaviour can be obtained assuming a coronal filling factor between 0.2 and 0.5.
Aims. We analyse SUMER spectral scans of a large sunspot within active region NOAA 10923, obtained on 14-15 November 2006, to determine the morphology and dynamics of the sunspot atmosphere at different heights/temperatures. Methods: The data analyse d here consist of spectroheliograms in the continuum around 142.0 nm and in the Si iv 140.2 nm, O iii 70.3 nm, N iv 76.5 nm, and O iv 79.0 nm spectral lines. Gaussian-fitting of the observed profiles provides line-of-sight velocity and Doppler-width maps. Results: The data show an asymmetric downflow pattern compatible with the presence of the inverse Evershed flow in a region within roughly twice the penumbral radius at transition-region temperatures up to 0.18 MK. The motions, highly inhomogeneous on small scales, seem to occur in a collar of radially directed filamentary structures, with an average width less than the 1 Mm spatial resolution of SUMER and characterised by different plasma speeds. Assuming that the flows are directed along the field lines, we deduce that such field lines are inclined by 10 deg to 25 deg with respect to the solar surface.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا