ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical simulation for comminution processes inside the vial of ball mills are performed using Monte Carlo method. The internal dynamics is represented by recently developed model based on hamiltonian involving the impact and surrounding electromag netic potentials. The paper is focused on investigating the behaviors of normalized macroscopic pressure, $P/{P_0}$, in term of system temperature and the milled powder mass. The results provide theoretical justification that high efficiency is expected at low system temperature region. It is argued that keeping the system temperature as low as possible is crucial to prevent agglomeration which is a severe obstacle for further comminution processes.
A model to describe the mechanism of conformational dynamics in secondary protein based on matter interactions is proposed. The approach deploys the lagrangian method by imposing certain symmetry breaking. The protein backbone is initially assumed to be nonlinear and represented by the Sine-Gordon equation, while the nonlinear external bosonic sources is represented by $phi^4$ interaction. It is argued that the nonlinear source induces the folding pathway in a different way than the previous work with initially linear backbone. Also, the nonlinearity of protein backbone decreases the folding speed.
The statistical properties of protein folding within the {phi}^4 model are investigated. The calculation is performed using statistical mechanics and path integral method. In particular, the evolution of heat capacity in term of temperature is given for various levels of the nonlinearity of source and the strength of interaction between protein backbone and nonlinear source. It is found that the nonlinear source contributes constructively to the specific heat especially at higher temperature when it is weakly interacting with the protein backbone. This indicates increasing energy absorption as the intensity of nonlinear sources are getting greater. The simulation of protein folding dynamics within the model is also refined.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا