ترغب بنشر مسار تعليمي؟ اضغط هنا

Particle accelerators are invaluable tools for research in the basic and applied sciences, in fields such as materials science, chemistry, the biosciences, particle physics, nuclear physics and medicine. The design, commissioning, and operation of ac celerator facilities is a non-trivial task, due to the large number of control parameters and the complex interplay of several conflicting design goals. We propose to tackle this problem by means of multi-objective optimization algorithms which also facilitate a parallel deployment. In order to compute solutions in a meaningful time frame a fast and scalable software framework is required. In this paper, we present the implementation of such a general-purpose framework for simulation-based multi-objective optimization methods that allows the automatic investigation of optimal sets of machine parameters. The implementation is based on a master/slave paradigm, employing several masters that govern a set of slaves executing simulations and performing optimization tasks. Using evolutionary algorithms as the optimizer and OPAL as the forward solver, validation experiments and results of multi-objective optimization problems in the domain of beam dynamics are presented. The high charge beam line at the Argonne Wakefield Accelerator Facility was used as the beam dynamics model. The 3D beam size, transverse momentum, and energy spread were optimized.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا