ترغب بنشر مسار تعليمي؟ اضغط هنا

MCViNE (Monte-Carlo VIrtual Neutron Experiment) is a versatile Monte Carlo (MC) neutron ray-tracing program that provides researchers with tools for performing computer modeling and simulations that mirror real neutron scattering experiments. By adop ting modern software engineering practices such as using composite and visitor design patterns for representing and accessing neutron scatterers, and using recursive algorithms for multiple scattering, MCViNE is flexible enough to handle sophisticated neutron scattering problems including, for example, neutron detection by complex detector systems, and single and multiple scattering events in a variety of samples and sample environments. In addition, MCViNE can take advantage of simulation components in linear-chain-based MC ray tracing packages widely used in instrument design and optimization, as well as NumPy-based components that make prototypes useful and easy to develop. These developments have enabled us to carry out detailed simulations of neutron scattering experiments with non-trivial samples in time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. With simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.
77 - K. Bongs , Y. Singh , L. Smith 2015
Ultra-precise optical clocks in space will allow new studies in fundamental physics and astronomy. Within an European Space Agency (ESA) program, the Space Optical Clocks (SOC) project aims to install and to operate an optical lattice clock on the In ternational Space Station (ISS) towards the end of this decade. It would be a natural follow-on to the ACES mission, improving its performance by at least one order of magnitude. The payload is planned to include an optical lattice clock, as well as a frequency comb, a microwave link, and an optical link for comparisons of the ISS clock with ground clocks located in several countries and continents. Within the EU-FP7-SPACE-2010-1 project no. 263500, during the years 2011-2015 a compact, modular and robust strontium lattice optical clock demonstrator has been developed. Goal performance is a fractional frequency instability below 1x10^{-15}, tau^{-1/2} and a fractional inaccuracy below 5x10^{-17}. Here we describe the current status of the apparatus development, including the laser subsystems. Robust preparation of cold {88}^Sr atoms in a second stage magneto-optical trap (MOT) is achieved.
238 - L. Smith , P. W. Lucas , R. Bunce 2014
The UKIDSS Galactic Plane Survey (GPS) began in 2005 as a 7 year effort to survey ~1800 square degrees of the northern Galactic plane in the J, H, and K passbands. The survey included a second epoch of K band data, with a baseline of 2 to 8 years, fo r the purpose of investigating variability and measuring proper motions. We have calculated proper motions for 167 Million sources in a 900 square degree area located at l > 60 degrees in order to search for new high proper motion objects. Visual inspection has verified 617 high proper motion sources (> 200 mas/yr) down to K=17, of which 153 are new discoveries. Among these we have a new spectroscopically confirmed T5 dwarf, an additional T dwarf with estimated type T6, 13 new L dwarf candidates, and two new common proper motion systems containing ultracool dwarf candidates. We provide improved proper motions for an additional 12 high proper motion stars that were independently discovered in the WISE dataset during the course of this investigation.
The UKIDSS Large Area Survey (LAS) began in 2005, with the start of the UKIDSS program as a 7 year effort to survey roughly 4000 deg$^2$ at high galactic latitudes in Y, J, H and K bands. The survey also included a significant quantity of 2-epoch J b and observations, with an epoch baseline greater than 2 years to calculate proper motions. We present a near infrared proper motion catalogue for the 1500 deg$^2$ of the 2 epoch LAS data, which includes 135,625 stellar sources and a further 88,324 with ambiguous morphological classifications, all with motions detected above the 5$sigma$ level. We developed a custom proper motion pipeline which we describe here. Our catalogue agrees well with the proper motion data supplied for a 300 deg$^2$ subset in the current WFCAM Science Archive (WSA) tenth data release (DR10) catalogue, and in various optical catalogues, but it benefits from a larger matching radius and hence a larger upper proper motion detection limit. We provide absolute proper motions, using LAS galaxies for the relative to absolute correction. By using local 2nd order polynomial transformations, as opposed to linear transformations in the WSA, we correct better for any local distortions in the focal plane, not including the radial distortion that is removed by the UKIDSS pipeline. We present the results of proper motion searches for new brown dwarfs and white dwarfs. We discuss 41 sources in the WSA DR10 overlap with our catalogue with proper motions $>$300 $mas yr^{-1}$, several of which are new detections. We present 15 new candidate ultra-cool dwarf binary systems.
The results from a large field Far-Infrared (FIR) and sub-millimeter (sub-mm) survey of our neighbor galaxy M31 are presented. We have obtained Herschel images of a ~5.5x2.5 degree area centered on Andromeda. Using 21 cm atomic hydrogen maps, we are able to disentangle genuine emission from M31 from that for foreground Galactic cirrus, allowing us to recognize dusty structures out to ~31 kpc from the center. We first characterize the FIR and sub-mm morphology and then, by de-projecting Herschel maps and running an ad--hoc source extraction algorithm, we reconstruct the intrinsic morphology and the spatial distribution of the molecular complexes. Finally, we study the spatially resolved properties of the dust (temperature, emissivity, mass, etc.), by means of a pixel-by-pixel SED fitting approach.
We report the discovery of 76 new T dwarfs from the UKIDSS Large Area Survey (LAS). Near-infrared broad and narrow-band photometry and spectroscopy are presented for the new objects, along with WISE and warm-Spitzer photometry. Proper motions for 128 UKIDSS T dwarfs are presented from a new two epoch LAS proper motion catalogue. We use these motions to identify two new benchmark systems: LHS 6176AB, a T8+M4 pair and HD118865AB, a T5.5+F8 pair. Using age constraints from the primaries and evolutionary models to constrain the radii we have estimated their physical properties from their bolometric luminosity. We compare the colours and properties of known benchmark T dwarfs to the latest model atmospheres and draw two principal conclusions. Firstly, it appears that the H - [4.5] and J - W2 colours are more sensitive to metallicity than has previously been recognised, such that differences in metallicity may dominate over differences in Teff when considering relative properties of cool objects using these colours. Secondly, the previously noted apparent dominance of young objects in the late-T dwarf sample is no longer apparent when using the new model grids and the expanded sample of late-T dwarfs and benchmarks. This is supported by the apparently similar distribution of late-T dwarfs and earlier-type T dwarfs on reduced proper motion diagrams that we present. Finally, we present updated space densities for the late-T dwarfs, and compare our values to simulation predictions and those from WISE.
We present a detailed study of how the Star Formation Rate (SFR) relates to the interstellar medium (ISM) of M31 at ~140pc scales. The SFR is calculated using the far-ultraviolet and 24um emission, corrected for the old stellar population in M31. We find a global value for the SFR of 0.25+/-0.05Msun/yr and compare this with the SFR found using the total far-infrared (FIR) luminosity. There is general agreement in regions where young stars dominate the dust heating. Atomic hydrogen (HI) and molecular gas (traced by carbon monoxide, CO) or the dust mass is used to trace the total gas in the ISM. We show that the global surface densities of SFR and gas mass place M31 amongst a set of low-SFR galaxies in the plot of Kennicutt (1998b). The relationship between SFR and gas surface density is tested in six radial annuli across M31, assuming a power law relationship with index, N. The star formation law using total gas traced by HI and CO gives a global index of N=2.03+/-0.04, with a significant variation with radius; the highest values are observed in the 10kpc ring. We suggest that this slope is due to HI turning molecular at ~10Msun/pc2. When looking at H2 regions, we measure a higher mean SFR suggesting a better spatial correlation between H2 and SF. We find N~0.6 with consistent results throughout the disk - this is at the low end of values found in previous work and argues against a superlinear SF law on small scales.
The cosmic microwave background (CMB) is affected by the total radiation density around the time of decoupling. At that epoch, neutrinos comprised a significant fraction of the radiative energy, but there could also be a contribution from primordial gravitational waves with frequencies greater than ~ 10^-15 Hz. If this cosmological gravitational wave background (CGWB) were produced under adiabatic initial conditions, its effects on the CMB and matter power spectrum would mimic massless non-interacting neutrinos. However, with homogenous initial conditions, as one might expect from certain models of inflation, pre big-bang models, phase transitions and other scenarios, the effect on the CMB would be distinct. We present updated observational bounds for both initial conditions using the latest CMB data at small scales from the South Pole Telescope (SPT) in combination with Wilkinson Microwave Anisotropy Probe (WMAP), current measurements of the baryon acoustic oscillations, and the Hubble parameter. With the inclusion of the data from SPT the adiabatic bound on the CGWB density is improved by a factor of 1.7 to 10^6 Omega_gw < 8.7 at the 95% confidence level (C.L.), with weak evidence in favor of an additional radiation component consistent with previous analyses. The constraint can be converted into an upper limit on the tension of horizon-sized cosmic strings that could generate this gravitational wave component, with Gmu < 2 10^-7 at 95% C.L., for string tension Gmu. The homogeneous bound improves by a factor of 3.5 to 10^6 Omega_gw < 1.0 at 95% C.L., with no evidence for such a component from current data.
It has often been suggested that an alternative to the standard CO/21-cm method for estimating the mass of the interstellar medium (ISM) in a galaxy might be to estimate the mass of the ISM from the continuum dust emission. In this paper, we investig ate the potential of this technique using Herschel observations of ten galaxies in the Herschel Reference Survey and in the Herschel Virgo Cluster Survey. We show that the emission detected by Herschel is mostly from dust that has a temperature and emissivity index similar to that of dust in the local ISM in our galaxy, with the temperature generally increasing towards the centre of each galaxy. We calibrate the dust method using the CO and 21-cm observations to provide an independent estimate of the mass of hydrogen in each galaxy, solving the problem of the uncertain `X factor for the molecular gas by minimizing the dispersion in the ratio of the masses estimated using the two methods. With the calibration for the dust method and the estimate of the X-factor produced in this way, the dispersion in the ratio of the two gas masses is 30%, which gives an upper limit on the fundamental accuracy of the dust method. The calibration we obtain for the dust method is very similar to an independent Herschel measurement for M31 and to the calibration for the Milky Way from Planck measurements.
We have obtained Herschel images at five wavelengths from 100 to 500 micron of a ~5.5x2.5 degree area centred on the local galaxy M31 (Andromeda), our nearest neighbour spiral galaxy, as part of the Herschel guaranteed time project HELGA. The main go als of HELGA are to study the characteristics of the extended dust emission, focusing on larger scales than studied in previous observations of Andromeda at an increased spatial resolution, and the obscured star formation. In this paper we present data reduction and Herschel maps, and provide a description of the far-infrared morphology, comparing it with features seen at other wavelengths. We use high--resolution maps of the atomic hydrogen, fully covering our fields, to identify dust emission features that can be associated to M31 with confidence, distinguishing them from emission coming from the foreground Galactic cirrus. Thanks to the very large extension of our maps we detect, for the first time at far-infrared wavelengths, three arc-like structures extending out to ~21, ~26 and ~31 kpc respectively, in the south-western part of M31. The presence of these features, hosting ~2.2e6 Msol of dust, is safely confirmed by their detection in HI maps. Overall, we estimate a total dust mass of ~5.8e7 Msol, about 78% of which is contained in the two main ring-like structures at 10 and 15 kpc, at an average temperature of 16.5 K. We find that the gas-to-dust ratio declines exponentially as a function of the galacto-centric distance, in agreement with the known metallicity gradient, with values ranging from 66 in the nucleus to ~275 in the outermost region. [Abridged]
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا