ترغب بنشر مسار تعليمي؟ اضغط هنا

Intracellular transport processes driven by molecular motors can be described by stochastic lattice models of self-driven particles. Here we focus on bidirectional transport models excluding the exchange of particles on the same track. We explore the possibility to have efficient transport in these systems. One possibility would be to have appropriate interactions between the various motors species, so as to form lanes. However, we show that the lane formation mechanism based on modified attachment/detachment rates as it was proposed previously is not necessarily connected to an efficient transport state and is suppressed when the diffusivity of unbound particles is finite. We propose another interaction mechanism based on obstacle avoidance that allows to have lane formation for limited diffusion. Besides, we had shown in a separate paper that the dynamics of the lattice itself could be a key ingredient for the efficiency of bidirectional transport. Here we show that lattice dynamics and interactions can both contribute in a cooperative way to the efficiency of transport. In particular, lattice dynamics can decrease the interaction threshold beyond which lanes form. Lattice dynamics may also enhance the transport capacity of the system even when lane formation is suppressed.
Motivated by experimental results on the interplay between molecular motors and tau proteins, we extend lattice-based models of intracellular transport to include a second species of particle which locally influences the motor-filament attachment rat e. We consider various exactly solvable limits of a stochastic multi-particle model before focusing on the low-motor-density regime. Here, an approximate treatment based on the random walk behaviour of single motors gives good quantitative agreement with simulation results for the tau-dependence of the motor current. Finally, we discuss the possible physiological implications of our results.
257 - M. Ebbinghaus , L. Santen 2009
The microtubule network, an important part of the cytoskeleton, is constantly remodeled by alternating phases of growth and shrinkage of individual filaments. Plus-end tracking proteins (+TIPs) interact with the microtubule and in many cases alter it s dynamics. While it is established that the prototypal CLIP-170 enhances microtubule stability by increasing rescues, the plus-end tracking mechanism is still under debate. We present a model for microtubule dynamics in which a rescue factor is dynamically added to the filament while growing. As a consequence, the filament shows aging behavior which should be experimentally accessible and thus allow one to exclude some hypothesized models of the inclusion of rescue factors at the microtubule plus end. Additionally, we show the strong influence of the cell geometry on the quantitative results.
Bidirectional variants of stochastic many particle models for transport by molecular motors show a strong tendency to form macroscopic clusters on static lattices. Inspired by the fact that the microscopic tracks for molecular motors are dynamical, w e study the influence of different types of lattice dynamics on stochastic bidirectional transport. We observe a transition toward efficient transport (corresponding to the dissolution of large clusters) controlled by the lattice dynamics.
178 - M. Ebbinghaus , L. Santen 2009
We introduce a stochastic lattice gas model including two particle species and two parallel lanes. One lane with exclusion interaction and directed motion and the other lane without exclusion and unbiased diffusion, mimicking a micotubule filament an d the surrounding solution. For a high binding affinity to the filament, jam-like situations dominate the systems behaviour. The fundamental process of position exchange of two particles is approximated. In the case of a many-particle system, we were able to identify a regime in which the system is rather homogenous presenting only small accumulations of particles and a regime in which an important fraction of all particles accumulates in the same cluster. Numerical data proposes that this cluster formation will occur at all densities for large system sizes. Coupling of several filaments leads to an enhanced cluster formation compared to the uncoupled system, suggesting that efficient bidirectional transport on one-dimensional filaments relies on long-ranged interactions and track formation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا