ترغب بنشر مسار تعليمي؟ اضغط هنا

The solar chromosphere and transition region (TR) form an interface between the Suns surface and its hot outer atmosphere. Here most of the non-thermal energy that powers the solar atmosphere is transformed into heat, although the detailed mechanism remains elusive. High-resolution (0.33-arcsec) observations with NASAs Interface Region Imaging Spectrograph (IRIS) reveal a chromosphere and TR that are replete with twist or torsional motions on sub-arcsecond scales, occurring in active regions, quiet Sun regions, and coronal holes alike. We coordinated observations with the Swedish 1-m Solar Telescope (SST) to quantify these twisting motions and their association with rapid heating to at least TR temperatures. This view of the interface region provides insight into what heats the low solar atmosphere.
The sub-arcsec bright points (BP) associated with the small scale magnetic fields in the lower solar atmosphere are advected by the evolution of the photospheric granules. We measure various quantities related to the horizontal motions of the BPs obs erved in two wavelengths, including the velocity auto-correlation function. A 1 hr time sequence of wideband H$alpha$ observations conducted at the textit{Swedish 1-m Solar Telescope} (textit{SST}), and a 4 hr textit{Hinode} textit{G}-band time sequence observed with the Solar Optical telescope are used in this work. We follow 97 textit{SST} and 212 textit{Hinode} BPs with 3800 and 1950 individual velocity measurements respectively. For its high cadence of 5 s as compared to 30 s for textit{Hinode} data, we emphasize more on the results from textit{SST} data. The BP positional uncertainty achieved by textit{SST} is as low as 3 km. The position errors contribute 0.75 km$^2$ s$^{-2}$ to the variance of the observed velocities. The textit{raw} and textit{corrected} velocity measurements in both directions, i.e., $(v_x,v_y)$, have Gaussian distributions with standard deviations of $(1.32,1.22)$ and $(1.00, 0.86)$ km s$^{-1}$ respectively. The BP motions have correlation times of about $22 - 30$ s. We construct the power spectrum of the horizontal motions as a function of frequency, a quantity that is useful and relevant to the studies of generation of Alfven waves. Photospheric turbulent diffusion at time scales less than 200 s is found to satisfy a power law with an index of 1.59.
Small and elongated, cool and dense blob-like structures are being reported with high resolution telescopes in physically different regions throughout the solar atmosphere. Their detection and the understanding of their formation, morphology and ther modynamical characteristics can provide important information on their hosting environment, especially concerning the magnetic field, whose understanding constitutes a major problem in solar physics. An example of such blobs is coronal rain, a phenomenon of thermal non- equilibrium observed in active region loops, which consists of cool and dense chromospheric blobs falling along loop-like paths from coronal heights. So far, only off-limb coronal rain has been observed and few reports on the phenomenon exist. In the present work, several datasets of on-disk H{alpha} observations with the CRisp Imaging SpectroPolarimeter (CRISP) at the Swedish 1-m Solar Telescope (SST) are analyzed. A special family of on-disk blobs is selected for each dataset and a statistical analysis is carried out on their dynamics, morphology and temperatures. All characteristics present distributions which are very similar to reported coronal rain statistics. We discuss possible interpretations considering other similar blob-like structures reported so far and show that a coronal rain interpretation is the most likely one. Their chromospheric nature and the projection effects (which eliminate all direct possibility of height estimation) on one side, and their small sizes, fast dynamics, and especially, their faint character (offering low contrast with the background intensity) on the other side, are found as the main causes for the absence until now of the detection of this on-disk coronal rain counterpart.
The tropical wisdom that when it is hot and dense we can expect rain might also apply to the Sun. Indeed, observations and numerical simulations have shown that strong heating at footpoints of loops, as is the case for active regions, puts their coro nae out of thermal equilibrium, which can lead to a phenomenon known as catastrophic cooling. Following local pressure loss in the corona, hot plasma locally condenses in these loops and dramatically cools down to chromospheric temperatures. These blobs become bright in H-alpha and Ca II H in time scales of minutes, and their dynamics seem to be subject more to internal pressure changes in the loop rather than to gravity. They thus become trackers of the magnetic field, which results in the spectacular coronal rain that is observed falling down coronal loops. In this work we report on high resolution observations of coronal rain with the Solar Optical Telescope (SOT) on Hinode and CRISP at the Swedish Solar Telescope (SST). A statistical study is performed in which properties such as velocities and accelerations of coronal rain are derived. We show how this phenomenon can constitute a diagnostic tool for the internal physical conditions inside loops. Furthermore, we analyze transverse oscillations of strand-like condensations composing coronal rain falling in a loop, and discuss the possible nature of the wave. This points to the important role that coronal rain can play in the fields of coronal heating and coronal seismology.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا