ترغب بنشر مسار تعليمي؟ اضغط هنا

202 - J. Rifa , L. Ronquillo 2010
Product perfect codes have been proven to enhance the performance of the F5 steganographic method, whereas perfect Z2Z4-linear codes have been recently introduced as an efficient way to embed data, conforming to the +/-1-steganography. In this paper, we present two steganographic methods. On the one hand, a generalization of product perfect codes is made. On the other hand, this generalization is applied to perfect Z2Z4-linear codes. Finally, the performance of the proposed methods is evaluated and compared with those of the aforementioned schemes.
Steganography is an information hiding application which aims to hide secret data imperceptibly into a commonly used media. Unfortunately, the theoretical hiding asymptotical capacity of steganographic systems is not attained by algorithms developed so far. In this paper, we describe a novel coding method based on Z2Z4-linear codes that conforms to +/-1-steganography, that is secret data is embedded into a cover message by distorting each symbol by one unit at most. This method solves some problems encountered by the most efficient methods known today, based on ternary Hamming codes. Finally, the performance of this new technique is compared with that of the mentioned methods and with the well-known theoretical upper bound.
The well known Plotkin construction is, in the current paper, generalized and used to yield new families of Z2Z4-additive codes, whose length, dimension as well as minimum distance are studied. These new constructions enable us to obtain families of Z2Z4-additive codes such that, under the Gray map, the corresponding binary codes have the same parameters and properties as the usual binary linear Reed-Muller codes. Moreover, the first family is the usual binary linear Reed-Muller family.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا