ترغب بنشر مسار تعليمي؟ اضغط هنا

121 - Pankaj Kushwaha 2014
The $gamma$-ray flare of PKS 1222+216, observed in June 2010, is interpreted as an outcome of jet dynamics at recollimation zone. We obtained the $gamma$-ray light-curves in three different energy bands, namely, 100--300 MeV, 300 MeV--1 GeV and 1--3 GeV from observations by the emph{Fermi} Large Area Telescope (LAT). We also use the emph{Swift}--XRT flux from 0.3--10 keV obtained from archival data. We supplement these with the 0.07--0.4 TeV observations with MAGIC telescope, available in the literature. The detection of source at very high energy (VHE, $E>100$ GeV) with a differential photon spectral index of $2.7pm0.3$ and the rapid variability associated with it suggests that the emission arises from a compact region located beyond the broad line emitting region. The plausible $gamma$-ray emission mechanism can then be inverse Compton scattering of IR photons from obscuring torus. Further, the decay time of LAT flare cannot be explained by considering simple radiative loss mechanisms. Hence, to interpret the LAT light curves, we develop a model where the broadband emission originates from a compact region, arising plausibly from the compression of jet matter at the recollimation zone. The flare is then expressed as an outcome of jet deceleration probably associated with this focusing effect. The parameters of the model are further constrained by reproducing the broadband spectral energy distribution of the source obtained during the flare episode. Our study suggests that the particle energy density exceeds magnetic energy density by a large factor which in turn may cause rapid expansion of the emission region. However, near equipartition can be achieved towards the end of LAT flare during which the compact emission region would have expanded to the size of jet cross-section.
The Swift era has posed a challenge to the standard blast-wave model of Gamma Ray Burst (GRB) afterglows. The key observational features expected within the model are rarely observed, such as the achromatic steepening (`jet-break) of the light curves . The observed afterglow light curves showcase additional complex features requiring modifications within the standard model. Here we present optical/NIR observations, millimeter upper limits and comprehensive broadband modelling of the afterglow of the bright GRB 0505025A, detected by Swift. This afterglow cannot be explained by the simplistic form of the standard blast-wave model. We attempt modelling the multi-wavelength light curves using (i) a forward-reverse shock model, (ii) a two-component outflow model and (iii) blast-wave model with a wind termination shock. The forward-reverse shock model cannot explain the evolution of the afterglow. The two component model is able to explain the average behaviour of the afterglow very well but cannot reproduce the fluctuations in the early X-ray light curve. The wind termination shock model reproduces the early light curves well but deviates from the global behaviour of the late-time afterglow.
We explore the physics behind one of the brightest radio afterglows ever, GRB 030329, at late times when the jet is non-relativistic. We determine the physical parameters of the blast wave and its surroundings, in particular the index of the electron energy distribution, the energy of the blast wave, and the density (structure) of the circumburst medium. We then compare our results with those from image size measurements. We observed the GRB 030329 radio afterglow with the Westerbork Synthesis Radio Telescope and the Giant Metrewave Radio Telescope at frequencies from 325 MHz to 8.4 GHz, spanning a time range of 268-1128 days after the burst. We modeled all the available radio data and derived the physical parameters. The index of the electron energy distribution is p=2.1, the circumburst medium is homogeneous, and the transition to the non-relativistic phase happens at t_NR ~ 80 days. The energy of the blast wave and density of the surrounding medium are comparable to previous findings. Our findings indicate that the blast wave is roughly spherical at t_NR, and they agree with the implications from the VLBI studies of image size evolution. It is not clear from the presented dataset whether we have seen emission from the counter jet or not. We predict that the Low Frequency Array will be able to observe the afterglow of GRB 030329 and many other radio afterglows, constraining the physics of the blast wave during its non-relativistic phase even further.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا