ترغب بنشر مسار تعليمي؟ اضغط هنا

The formation of the massive young stars surrounding SgrA* is still an open question. In this paper, we simulate the infall of a turbulent molecular cloud towards the Galactic Center (GC). We adopt two different cloud masses (4.3x10^4 and 1.3x10^5 so lar masses). We run five simulations: the gas is assumed to be isothermal in four runs, whereas radiative cooling is included in the fifth run. In all the simulations, the molecular cloud is tidally disrupted, spirals towards the GC, and forms a small, dense and eccentric disk around SgrA*. With high resolution simulations, we follow the fragmentation of the gaseous disk. Star candidates form in a ring at ~0.1-0.4 pc from the super-massive black hole (SMBH) and have moderately eccentric orbits (~0.2-0.4), in good agreement with the observations. The mass function of star candidates is top-heavy only if the local gas temperature is high (>~100 K) during the star formation and if the parent cloud is sufficiently massive (>~10^5 solar masses). Thus, this study indicates that the infall of a massive molecular cloud is a viable scenario for the formation of massive stars around SgrA*, provided that the gas temperature is kept sufficiently high (>~100 K).
193 - M. Mapelli ITP 2011
We investigate the formation of RE galaxies (i.e. of collisional ring galaxies with an empty ring), with N-body/SPH simulations. The simulations employ a recipe for star formation (SF) and feedback that has been shown to be crucial to produce realist ic galaxies in a cosmological context. We show that RE galaxies can form via off-centre collisions (i.e. with a non-zero impact parameter), even for small inclination angles. The ring can be either a complete ring or an arc, depending on the initial conditions (especially on the impact parameter). In our simulations, the nucleus of the target galaxy is displaced from the dynamical centre of the galaxy and is buried within the ring, as a consequence of the off-centre collision. We find that the nucleus is not vertically displaced from the plane of the ring. We study the kinematics of the ring, finding agreement with the predictions by the analytic theory. The SF history of the simulated galaxies indicates that the interaction enhances the SF rate. We compare the results of our simulations with the observations of Arp 147, that is the prototype of RE galaxies.
75 - M. Podolak , L. Mayer , 2010
We investigate the evolution of grains composed of an ice shell surrounding an olivine core as they pass through a spiral shock in a protoplanetary disk. We use published three-dimensional radiation-hydrodynamics simulations of massive self-gravitati ng protoplanetary disks to extract the thermodynamics of spiral shocks in the region between 10 and 20 AU from the central star. As the density wave passes, it heats the grains, causing them to lose their ice shell and resulting in a lowering of the grain opacity. In addition, since grains of different sizes will have slightly different temperatures, there will be a migration of ice from the hotter grains to the cooler ones. The rate of migration depends on the temperature of the background gas, so a grain distribution that is effectively stable for low temperatures, can undergo an irreversible change in opacity if the gas is temporarily heated to above $sim 150$,K. We find that the opacity can drop more, and at a significantly faster rate throughout the spiral shocks relative to the prediction of standard dust grains models adopted in hydrodynamical calculations of protoplanetary disks. This would lead to faster gas cooling within spiral arms. We discuss the implications of our results on the susceptibility of disk fragmentation into sub-stellar objects at distances of a few tens of astronomical units.
106 - M. Mapelli , C. Huwyler , L. Mayer 2010
Massive young clusters (YCs) are expected to host intermediate-mass black holes (IMBHs) born via runaway collapse. These IMBHs are likely in binaries and can undergo mergers with other compact objects, such as stellar mass black holes (BHs) and neutr on stars (NSs). We derive the frequency of such mergers starting from information available in the Local Universe. Mergers of IMBH-NS and IMBH-BH binaries are sources of gravitational waves (GWs), which might allow us to reveal the presence of IMBHs. We thus examine their detectability by current and future GW observatories, both ground- and space-based. In particular, as representative of different classes of instruments we consider Initial and Advanced LIGO, the Einstein gravitational-wave Telescope (ET) and the Laser Interferometer Space Antenna (LISA). We find that IMBH mergers are unlikely to be detected with instruments operating at the current sensitivity (Initial LIGO). LISA detections are disfavored by the mass range of IMBH-NS and IMBH-BH binaries: less than one event per year is expected to be observed by such instrument. Advanced LIGO is expected to observe a few merger events involving IMBH binaries in a 1-year long observation. Advanced LIGO is particularly suited for mergers of relatively light IMBHs (~100 Msun) with stellar mass BHs. The number of mergers detectable with ET is much larger: tens (hundreds) of IMBH-NS (IMBH-BH) mergers might be observed per year, according to the runaway collapse scenario for the formation of IMBHs. We note that our results are affected by large uncertainties, produced by poor observational constraints on many of the physical processes involved in this study, such as the evolution of the YC density with redshift.[abridged]
60 - M. Colpi , M. Dotti , L. Mayer 2007
If massive black holes (BHs) are ubiquitous in galaxies and galaxies experience multiple mergers during their cosmic assembly, then BH binaries should be common albeit temporary features of most galactic bulges. Observationally, the paucity of active BH pairs points toward binary lifetimes far shorter than the Hubble time, indicating rapid inspiral of the BHs down to the domain where gravitational waves lead to their coalescence. Here, we review a series of studies on the dynamics of massive BHs in gas-rich galaxy mergers that underscore the vital role played by a cool, gaseous component in promoting the rapid formation of the BH binary. The BH binary is found to reside at the center of a massive self-gravitating nuclear disc resulting from the collision of the two gaseous discs present in the mother galaxies. Hardening by gravitational torques against gas in this grand disc is found to continue down to sub-parsec scales. The eccentricity decreases with time to zero and when the binary is circular, accretion sets in around the two BHs. When this occurs, each BH is endowed with it own small-size (< 0.01 pc) accretion disc comprising a few percent of the BH mass. Double AGN activity is expected to occur on an estimated timescale of < 1 Myr. The double nuclear point-like sources that may appear have typical separation of < 10 pc, and are likely to be embedded in the still ongoing starburst. We note that a potential threat of binary stalling, in a gaseous environment, may come from radiation and/or mechanical energy injections by the BHs. Only short-lived or sub-Eddington accretion episodes can guarantee the persistence of a dense cool gas structure around the binary necessary for continuing BH inspiral.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا