ترغب بنشر مسار تعليمي؟ اضغط هنا

We theoretically investigate electron transport through corrugated graphene ribbons and show how the ribbon curvature leads to an electronic superlattice with a period set by the corrugation wave length. Transport through the ribbon depends sensitive ly on the superlattice band structure which, in turn, strongly depends on the geometry of the deformed sheet. In particular, we find that for ribbon widths where the transverse level separation is comparable to the the band edge energy, a strong current switching occurs as function of an applied backgate voltage. Thus, artificially corrugated graphene sheets or ribbons can be used for the study of Dirac fermions in periodic potentials. Furthermore, this provides an additional design paradigm for graphene-based electronics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا