ترغب بنشر مسار تعليمي؟ اضغط هنا

113 - P. H. T. Tam , K. L. Li 2014
The binary system PSR B1259-63/LS 2883 is well sampled in radio, X-rays, and TeV gamma-rays, and shows orbital phase-dependent variability in these frequencies. The first detection of GeV gamma-rays from the system was made around the 2010 periastron passage. In this Letter, we present an analysis of X-ray and gamma-ray data obtained by the Swift/XRT, NuSTAR/FPM, and Fermi/LAT, through the recent periastron passage which occurred on 2014 May 4. While PSR B1259-63/LS 2883 was not detected by the LAT before and during this passage, we show that the GeV flares occurred at a similar orbital phase as in early 2011, thus establishing the repetitive nature of the post-periastron GeV flares. Multiple flares each lasting for a few days have been observed and short-term variability is seen as well. We also found X-ray flux variation contemporaneous with the GeV flare for the first time. A strong evidence of the keV-to-GeV connection came from the broadband high-energy spectra, which we interpret as synchrotron radiation from the shocked pulsar wind.
46 - L. Li , A. Chia , H. M. Wiseman 2014
The dynamics for an open quantum system can be `unravelled in infinitely many ways, depending on how the environment is monitored, yielding different sorts of conditioned states, evolving stochastically. In the case of ideal monitoring these states a re pure, and the set of states for a given monitoring forms a basis (which is overcomplete in general) for the system. It has been argued elsewhere [D. Atkins et al., Europhys. Lett. 69, 163 (2005)] that the `pointer basis as introduced by Zurek and Paz [Phys. Rev. Lett 70, 1187(1993)], should be identified with the unravelling-induced basis which decoheres most slowly. Here we show the applicability of this concept of pointer basis to the problem of state stabilization for quantum systems. In particular we prove that for linear Gaussian quantum systems, if the feedback control is assumed to be strong compared to the decoherence of the pointer basis, then the system can be stabilized in one of the pointer basis states with a fidelity close to one (the infidelity varies inversely with the control strength). Moreover, if the aim of the feedback is to maximize the fidelity of the unconditioned system state with a pure state that is one of its conditioned states, then the optimal unravelling for stabilizing the system in this way is that which induces the pointer basis for the conditioned states. We illustrate these results with a model system: quantum Brownian motion. We show that even if the feedback control strength is comparable to the decoherence, the optimal unravelling still induces a basis very close to the pointer basis. However if the feedback control is weak compared to the decoherence, this is not the case.
124 - G. Cao , T. F. Qi , L. Li 2013
We synthesize and study single crystals of a new double-perovskite Sr2YIrO6. Despite two strongly unfavorable conditions for magnetic order, namely, pentavalent Ir5+(5d4) ions which are anticipated to have Jeff=0 singlet ground states in the strong s pin-orbit coupling (SOC) limit, and geometric frustration in a face centered cubic structure formed by the Ir5+ ions, we observe this iridate to undergo a novel magnetic transition at temperatures below 1.3 K. We provide compelling experimental and theoretical evidence that the origin of magnetism is in an unusual interplay between strong non-cubic crystal fields and intermediate-strength SOC. Sr2YIrO6 provides a rare example of the failed dominance of SOC in the iridates.
84 - G. Cao , T. F. Qi , L. Li 2013
We report the successful synthesis of single-crystals of the layered iridate, (Na$_{1-x}$Li$_{x}$)$_2$IrO$_3$, $0leq x leq 0.9$, and a thorough study of its structural, magnetic, thermal and transport properties. The new compound allows a controlled interpolation between Na$_2$IrO$_3$ and Li$_2$IrO$_3$, while maintaing the novel quantum magnetism of the honeycomb Ir$^{4+}$ planes. The measured phase diagram demonstrates a dramatic suppression of the Neel temperature, $T_N$, at intermediate $x$ suggesting that the magnetic order in Na$_2$IrO$_3$ and Li$_2$IrO$_3$ are distinct, and that at $xapprox 0.7$, the compound is close to a magnetically disordered phase that has been sought after in Na$_2$IrO$_3$ and Li$_2$IrO$_3$. By analyzing our magnetic data with a simple theoretical model we also show that the trigonal splitting, on the Ir$^{4+}$ ions changes sign from Na$_2$IrO$_3$ and Li$_2$IrO$_3$, and the honeycomb iridates are in the strong spin-orbit coupling regime, controlled by $jeff=1/2$ moments.
548 - X. C. Hong , X. L. Li , B. Y. Pan 2013
The thermal conductivity of iron-based superconductor CsFe$_2$As$_2$ single crystal ($T_c =$ 1.81 K) was measured down to 50 mK. A significant residual linear term $kappa_0/T$ = 1.27 mW K$^{-2}$ cm$^{-1}$ is observed in zero magnetic field, which is about 1/10 of the normal-state value in upper critical field $H_{c2}$. In low magnetic field, $kappa_0/T$ increases rapidly with field. The overall field dependence of $kappa_0/T$ for our CsFe$_2$As$_2$ (with residual resistivity $rho_0$ = 1.80 $muOmega$ cm) lies between the dirty KFe$_2$As$_2$ (with $rho_0$ = 3.32 $muOmega$ cm) and the clean KFe$_2$As$_2$ (with $rho_0$ = 0.21 $muOmega$ cm). These results strongly suggest nodal superconducting gap in CsFe$_2$As$_2$, similar to its sister compound KFe$_2$As$_2$.
87 - Y. M. Xie , Z. R. Yang , L. Li 2012
The correlation between colossal magnetocapacitance (CMC) and colossal magnetoresistance (CMR) in CdCr2S4 system has been revealed. The CMC is induced in polycrystalline Cd0.97In0.03Cr2S4 by annealing in cadmium vapor. At the same time, an insulator- metal transition and a concomitant CMR are observed near the Curie temperature. In contrast, after the same annealing treatment, CdCr2S4 displays a typical semiconductor behavior and does not show magnetic field dependent dielectric and electric transport properties. The simultaneous occurrence or absence of CMC and CMR effects implies that the CMC in the annealed Cd0.97In0.03Cr2S4 could be explained qualitatively by a combination of CMR and Maxwell-Wagner effect.
The usual classical behaviour of S = 3/2, B-site ordered double perovskites generally results in simple, commensurate magnetic ground states. In contrast, heat capacity and neutron powder diffraction measurements for the S = 3/2 systems La2NaBO6 (B = Ru, Os) reveal an incommensurate magnetic ground state for La2NaRuO6 and a drastically suppressed ordered moment for La2NaOsO6. This behaviour is attributed to the large monoclinic structural distortions of these double perovskites. The distortions have the effect of weakening the nearest neighbour superexchange interactions, presumably to an energy scale that is comparable to the next nearest neighbour superexchange. The exotic ground states in these materials can then arise from a competition between these two types of antiferromagnetic interactions, providing a novel mechanism for achieving frustration in the double perovskite family.
549 - S. Y. Zhou , X. L. Li , B. Y. Pan 2012
The thermal conductivity $kappa$ of superconductor Ir$_{1-x}$Pt$_{x}$Te$_2$ ($x$ = 0.05) single crystal with strong spin-orbital coupling was measured down to 50 mK. The residual linear term $kappa_0/T$ is negligible in zero magnetic field. In low ma gnetic field, $kappa_0/T$ shows a slow field dependence. These results demonstrate that the superconducting gap of Ir$_{1-x}$Pt$_{x}$Te$_2$ is nodeless, and the pairing symmetry is likely conventional s-wave, despite the existence of strong spin-orbital coupling and a quantum critical point.
The nature of the magnetism brought about by Fe adatoms on the surface of the topological insulator Bi2Se3 was examined in terms of density functional calculations. The Fe adatoms exhibit strong easy-axis magnetic anisotropy in the dilute adsorption limit due to the topological surface states (TSS). The spin exchange J between the Fe adatoms follows a Ruderman-Kittel-Kasuya-Yosida (RKKY) behavior with substantial anisotropy, and the Dzyaloshinskii-Moriya (DM) interaction between them is quite strong with |D/J|~0.3 under the mediation by the TSS, and can be further raised to ~0.6 by an external electric field. The apparent single-ion anisotropy of a Fe adatom is indispensable in determining the spin orientation.
165 - L. Li , Z. R. Yang , Z. T. Zhang 2011
High-quality single crystals of K0.8Fe2Se1.4S0.4 are successfully synthesized by self-flux method with the superconducting transition temperatures Tconset = 32.8 K and Tczero = 31.2 K. In contrast to external pressure effect on superconductivity, the substitution of S for Se does not suppress Tc, which suggests that chemical doping may mainly modulate the anion height from Fe-layer rather than compressing interlayer distance. The investigation of the micromagnetism by electron spin resonance shows clear evidence for strong spin fluctuation at temperatures above Tc. Accompanied by the superconducting feature spectra, a novel resonance signal develops gradually upon cooling below Tc, indicating the coexistence of superconductivity and magnetism in K0.8Fe2Se1.4S0.4 crystal.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا