ترغب بنشر مسار تعليمي؟ اضغط هنا

Recently discovered relativistic spin torques induced by a lateral current at a ferromagnet/paramagnet interface are a candidate spintronic technology for a new generation of electrically-controlled magnetic memory devices. Phenomenologically, the to rques have field-like and antidamping-like components with distinct symmetries. Microscopically, they are considered to have two possible origins. In one picture, a spin-current generated in the paramagnet via the relativistic spin Hall effect (SHE) is absorbed in the ferromagnet and induces the spin transfer torque (STT). In the other picture, a non-equilibrium spin-density is generated via the relativistic inverse spin galvanic effect (ISGE) and induces the spin-orbit torque (SOT) in the ferromagnet. From the early observations in paramagnetic semiconductors, SHE and ISGE are known as companion phenomena that can both allow for electrically aligning spins in the same structure. It is essential for our basic physical understanding of the spin torques at the ferromagnet/paramagnet interface to experimentally disentangle the SHE and ISGE contributions. To achieve this we prepared an epitaxial transition-metal-ferromagnet/semiconductor-paramagnet single-crystal structure and performed a room-temperature vector analysis of the relativistic spin torques by means of the all-electrical ferromagnetic resonance (FMR) technique. By design, the field-like torque is governed by the ISGE-based mechanism in our structure while the antidamping-like torque is due to the SHE-based mechanism
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا