ترغب بنشر مسار تعليمي؟ اضغط هنا

We use a highly complete subset of the GAMA-II redshift sample to fully describe the stellar mass dependence of close-pairs and mergers between 10^8 Msun and 10^12 Msun. Using the analytic form of this fit we investigate the total stellar mass accret ing onto more massive galaxies across all mass ratios. Depending on how conservatively we select our robust merging systems, the fraction of mass merging onto more massive companions is 2.0%-5.6%. Using the GAMA-II data we see no significant evidence for a change in the close-pair fraction between redshift $z = 0.05-0.2$. However, we find a systematically higher fraction of galaxies in similar mass close-pairs compared to published results over a similar redshift baseline. Using a compendium of data and the function $gamma_M =A(1+z)m$ to predict the major close-pair fraction, we find fitting parameters of $A = 0.021 pm 0.001$ and $m = 1.53 pm 0.08$, which represents a higher low-redshift normalisation and shallower power-law slope than recent literature values. We find that the relative importance of in-situ star-formation versus galaxy merging is inversely correlated, with star-formation dominating the addition of stellar material below Mstar and merger accretion events dominating beyond Mstar. We find mergers have a measurable impact on the whole extent of the GSMF, manifest as a deepening of the dip in the GSMF over the next Gyr and an increase in Mstar by as much as 0.01-0.05 dex.
Identifying galaxy clustering at high redshift (i.e. z > 1) is essential to our understanding of the current cosmological model. However, at increasing redshift, clusters evolve considerably in star-formation activity and so are less likely to be ide ntified using the widely-used red sequence method. Here we assess the viability of instead identifying high redshift clustering using actively star-forming galaxies (SMGs associated with over-densities of BzKs/LBGs). We perform both a 2- and 3-D clustering analysis to determine whether or not true (3D) clustering can be identified where only 2D data are available. As expected, we find that 2D clustering signals are weak at best and inferred results are method dependant. In our 3D analysis, we identify 12 SMGs associated with an over-density of galaxies coincident both spatially and in redshift - just 8% of SMGs with known redshifts in our sample. Where an SMG in our target fields lacks a known redshift, their sightline is no more likely to display clustering than blank sky fields; prior redshift information for the SMG is required to identify a true clustering signal. We find that the strength of clustering in the volume around typical SMGs, while identifiable, is not exceptional. However, we identify a small number of highly clustered regions, all associated with an SMG. The most notable of these, surrounding LESSJ033336.8-274401, potentially contains an SMG, a QSO and 36 star-forming galaxies (a > 20sig over-density) all at z~1.8. This region is highly likely to represent an actively star-forming cluster and illustrates the success of using star-forming galaxies to select sites of early clustering. Given the increasing number of deep fields with large volumes of spectroscopy, or high quality and reliable photometric redshifts, this opens a new avenue for cluster identification in the young Universe.
We present 1.2mm MAMBO-2 observations of a field which is over-dense in Lyman Break Galaxies (LBGs) at z~5. The field includes seven spectroscopically-confirmed LBGs contained within a narrow (z=4.95+/-0.08) redshift range and an eighth at z=5.2. We do not detect any individual source to a limit of 1.6 mJy/beam (2*rms). When stacking the flux from the positions of all eight galaxies, we obtain a limit to the average 1.2 mm flux of these sources of 0.6mJy/beam. This limit is consistent with FIR imaging in other fields which are over-dense in UV-bright galaxies at z~5. Independently and combined, these limits constrain the FIR luminosity (8-1000 micron) to a typical z~5 LBG of LFIR<~3x10^11 Lsun, implying a dust mass of Mdust<~10^8 Msun (both assuming a grey body at 30K). This LFIR limit is an order of magnitude fainter than the LFIR of lower redshift sub-mm sources (z~1-3). We see no emission from any other sources within the field at the above level. While this is not unexpected given millimetre source counts, the clustered LBGs trace significantly over-dense large scale structure in the field at z = 4.95. The lack of any such detection in either this or the previous work, implies that massive, obscured star-forming galaxies may not always trace the same structures as over-densities of LBGs, at least on the length scale probed here. We briefly discuss the implications of these results for future observations with ALMA.
84 - E. R. Stanway 2008
We present observations of redshifted CO(1-0) and CO(2-1) in a field containing an overdensity of Lyman break galaxies (LBGs) at z=5.12. Our Australia Telescope Compact Array observations were centered between two spectroscopically-confirmed z=5.12 g alaxies. We place upper limits on the molecular gas masses in these two galaxies of M(H_2) <1.7 x 10^10 M_sun and <2.9 x 10^9 M_sun (2 sigma), comparable to their stellar masses. We detect an optically-faint line emitter situated between the two LBGs which we identify as warm molecular gas at z=5.1245 +/- 0.0001. This source, detected in the CO(2-1) transition but undetected in CO(1-0), has an integrated line flux of 0.106 +/- 0.012 Jy km/s, yielding an inferred gas mass M(H_2)=(1.9 +/- 0.2) x 10^10 M_sun. Molecular line emitters without detectable counterparts at optical and infrared wavelengths may be crucial tracers of structure and mass at high redshift.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا