ترغب بنشر مسار تعليمي؟ اضغط هنا

We have surveyed molecular line emission from Orion BN/KL from 42.3 to 43.6 GHz with the Green Bank Telescope. Sixty-seven lines were identified and ascribed to 13 different molecular species. The spectrum at 7 mm is dominated by SiO, SO2, CH3OCH3, a nd C2H5CN. Five transitions have been detected from the SiO isotopologues 28SiO, 29SiO, and 30SiO. We report here for the first time the spectra of the 29SiO and 30SiO v=0 J=1-0 emission in Orion BN/KL, and we show that they have double-peaked profiles with velocity extents similar to the main isotopologue. The main motivation for the survey was the search of high-velocity (100-1000 km/s) outflows in the BN/KL region as traced by SiO Doppler components. Some of the unidentified lines in principle could be high-velocity SiO features, but without imaging data their location cannot be established. Wings of emission are present in the v=0 28SiO, 29SiO and 30SiO profiles, and we suggest that the v=0 emission from the three isotopologues might trace a moderately high-velocity (~30-50 km/s) component of the flows around the high-mass protostar Source I in the Orion BN/KL region. We also confirm the 7 mm detection of a complex oxygen-bearing species, acetone (CH3COCH3), which has been recently observed towards the hot core at 3 mm, and we have found further indications of the presence of long cyanopolyynes (HC5N and HC7N) in the quiescent cold gas of the extended ridge.
47 - D. A. Mitchell 2008
The interferometric technique known as peeling addresses many of the challenges faced when observing with low-frequency radio arrays, and is a promising tool for the associated calibration systems. We investigate a real-time peeling implementation fo r next-generation radio interferometers such as the Murchison Widefield Array (MWA). The MWA is being built in Australia and will observe the radio sky between 80 and 300 MHz. The data rate produced by the correlator is just over 19 GB/s (a few Peta-Bytes/day). It is impractical to store data generated at this rate, and software is currently being developed to calibrate and form images in real time. The software will run on-site on a high-throughput real-time computing cluster at several tera-flops, and a complete cycle of calibration and imaging will be completed every 8 seconds. Various properties of the implementation are investigated using simulated data. The algorithm is seen to work in the presence of strong galactic emission and with various ionospheric conditions. It is also shown to scale well as the number of antennas increases, which is essential for many upcoming instuments. Lessons from MWA pipeline development and processing of simulated data may be applied to future low-frequency fixed dipole arrays.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا