ترغب بنشر مسار تعليمي؟ اضغط هنا

115 - L. Gyorfi , G. Lugosi , G. Morvai 2008
We present a simple randomized procedure for the prediction of a binary sequence. The algorithm uses ideas from recent developments of the theory of the prediction of individual sequences. We show that if the sequence is a realization of a stationary and ergodic random process then the average number of mistakes converges, almost surely, to that of the optimum, given by the Bayes predictor. The desirable finite-sample properties of the predictor are illustrated by its performance for Markov processes. In such cases the predictor exhibits near optimal behavior even without knowing the order of the Markov process. Prediction with side information is also considered.
Let ${(X_i,Y_i)}$ be a stationary ergodic time series with $(X,Y)$ values in the product space $R^dbigotimes R .$ This study offers what is believed to be the first strongly consistent (with respect to pointwise, least-squares, and uniform distance) algorithm for inferring $m(x)=E[Y_0|X_0=x]$ under the presumption that $m(x)$ is uniformly Lipschitz continuous. Auto-regression, or forecasting, is an important special case, and as such our work extends the literature of nonparametric, nonlinear forecasting by circumventing customary mixing assumptions. The work is motivated by a time series model in stochastic finance and by perspectives of its contribution to the issues of universal time series estimation.
94 - L. Gyorfi , G. Morvai , 2007
This study concerns problems of time-series forecasting under the weakest of assumptions. Related results are surveyed and are points of departure for the developments here, some of which are new and others are new derivations of previous findings. T he contributions in this study are all negative, showing that various plausible prediction problems are unsolvable, or in other cases, are not solvable by predictors which are known to be consistent when mixing conditions hold.
222 - L. Gyorfi , G. Morvai 2007
In this paper we revisit the results of Loynes (1962) on stability of queues for ergodic arrivals and services, and show examples when the arrivals are bounded and ergodic, the service rate is constant, and under stability the limit distribution has larger than exponential tail.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا