ترغب بنشر مسار تعليمي؟ اضغط هنا

The rate of star formation both in the Galaxy and in external galaxies should be related to the physical properties of the molecular clouds from which stars form. This is expected for the starbursts found both in irregular galaxies and in some merger s. The dwarf galaxy Henize 2-10 is particularly interesting in this context as it shows a number of newly formed Super Star Clusters (SSCs) associated with a very rich molecular environment. We present a high angular resolution study of the molecular gas associated with the SSCs with the aim of deriving the physical properties of the parent molecular clouds. The final goal is to test the expectation that the formation of SSCs requires exceptionally dense and massive clouds. We have used the Submillimeter Array with an angular resolution of 1.9 X 1.3 to map the J=2-1 transition of CO in Henize 2-10. Supplementary measurements of HCN(J=1-0), 13CO(J=2-1) and millimeter continuum were obtained with the APEX, IRAM-30m and SEST single dish telescopes. Our single dish observations confirm the association of the newly formed SSCs in Henize 2-10 with dense molecular gas. Our interferometric observations resolve the CO(2-1) emission in several giant molecular clouds. Overall the molecular gas accounts for approximately half of the mass in the central regions of Henize 2-10. Although we find indications that the molecular clouds associated with the formation of SSCs in Henize 2-10 are massive and dense, the tracer we used (CO) and the linear resolution of our observations (60 X 80 pc) are still not adequate to test the expectation that exceptionally dense and massive cores are required for SSCs formation.
One of the most debated issues about sub-mJy radio sources, which are responsible for the steepening of the 1.4 GHz source counts, is the origin of their radio emission. Particularly interesting is the possibility of combining radio spectral index in formation with other observational properties to assess whether the sources are triggered by star formation or nuclear activity. The aim of this work is to study the optical and near infrared properties of a complete sample of 131 radio sources with S>0.4 mJy, observed at both 1.4 and 5 GHz as part of the ATESP radio survey. We use deep multi-colour (UBVRIJK) images, mostly taken in the framework of the ESO Deep Public Survey, to optically identify and derive photometric redshifts for the ATESP radio sources. Deep optical coverage and extensive colour information are available for 3/4 of the region covered by the radio sample. Typical depths of the images are U~25, B~26, V~25.4, R~25.5, I~24.3, 19.5<K_s<20.2, J<22.2. Optical/near infrared counterparts are found for ~78% (66/85) of the radio sources in the region covered by the deep multi-colour imaging, and for 56 of these reliable estimates of the redshift and type are derived. We find that many of the sources with flat radio spectra are characterised by high radio-to-optical ratios (R>1000), typical of classical powerful radio galaxies and quasars. Flat-spectrum sources with low R values are preferentially identified with early type galaxies, where the radio emission is most probably triggered by low-luminosity active galactic nuclei. Considering both early type galaxies and quasars as sources with an active nucleus, such sources largely dominate our sample (78%). Flat-spectrum sources associated with early type galaxies are quite compact (d<10-30 kpc), suggesting core-dominated radio emission.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا