ترغب بنشر مسار تعليمي؟ اضغط هنا

The aim of this work is to investigate the average properties of the intra-cluster medium (ICM) magnetic fields, and to search for possible correlations with the ICM thermal properties and cluster radio emission. We have selected a sample of 39 massi ve galaxy clusters from the HIghest X-ray FLUx Galaxy Cluster Sample, and used Northern VLA Sky Survey data to analyze the fractional polarization of radio sources out to 10 core radii from the cluster centers. Following Murgia et al (2004), we have investigated how different magnetic field strengths affect the observed polarized emission of sources lying at different projected distances from the cluster center. In addition, statistical tests are performed to investigate the fractional polarization trends in clusters with different thermal and non-thermal properties. We find a trend of the fractional polarization with the cluster impact parameter, with fractional polarization increasing at the cluster periphery and decreasing toward the cluster center. Such trend can be reproduced by a magnetic field model with central value of few $mu$G. The logrank statistical test indicates that there are no differences in the depolarization trend observed in cluster with and without radio halo, while the same test indicates significant differences when the depolarization trend of sources in clusters with and without cool core are compared. The comparison between clusters with high and low temperatures does not yields significant differences. Although therole of the gas density should be better accounted for, these results give important indications for models that require a role of the ICM magnetic field to explain the presence of cool core and radio halos in galaxy clusters.
The first detection of a diffuse radio source in a cluster of galaxies, dates back to the 1959 (Coma Cluster, Large et al. 1959). Since then, synchrotron radiating radio sources have been found in several clusters, and represent an important cluster component which is linked to the thermal gas. Such sources indicate the existence of large scale magnetic fields and of a population of relativistic electrons in the cluster volume. The observational results provide evidence that these phenomena are related to turbulence and shock-structures in the intergalactic medium, thus playing a major role in the evolution of the large scale structure in the Universe. The interaction between radio sources and cluster gas is well established in particular at the center of cooling core clusters, where feedback from AGN is a necessary ingredient to adequately describe the formation and evolution of galaxies and host clusters.
Recent results are reported on Magnetic Fields in Clusters of Galaxies, Diffuse Radio Emission, and Radio - X-ray connection in Radio Halos.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا