ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider an ultracold bosonic binary mixture confined in a one-dimensional double-well trap. The two bosonic components are assumed to be two hyperfine internal states of the same atom. We suppose that these two components are spin-orbit coupled b etween each other. We employ the two-mode approximation starting from two coupled Gross-Pitaevskii equations and derive a system of ordinary differential equations governing the temporal evolution of the inter-well population imbalance of each component and that between the two bosonic species. We study the Josephson oscillations of these spin-orbit coupled Bose-Einstein condensates by analyzing the interplay between the interatomic interactions and the spin-orbit coupling and the self-trapped dynamics of the inter-species imbalance. We show that the dynamics of this latter variable is crucially determined by the relationship between the spin-orbit coupling, the tunneling energy, and the interactions.
We study interacting dipolar atomic bosons in a triple-well potential within a ring geometry. This system is shown to be equivalent to a three-site Bose-Hubbard model. We analyze the ground state of dipolar bosons by varying the effective on-site int eraction. This analysis is performed both numerically and analytically by using suitable coherent-state representations of the ground state. The latter exhibits a variety of forms ranging from the su(3) coherent state in the delocalization regime to a macroscopic cat-like state with fully localized populations, passing for a coexistence regime where the ground state displays a mixed character. We characterize the quantum correlations of the ground state from the bi-partition perspective. We calculate both numerically and analytically (within the previous coherent-state representation) the single-site entanglement entropy which, among various interesting properties, exhibits a maximum value in correspondence to the transition from the cat-like to the coexistence regime. In the latter case, we show that the ground-state mixed form corresponds, semiclassically, to an energy exhibiting two almost-degenerate minima.
We consider a two-mode atomic Josephson junction realized with dilute dipolar bosons confined by a double-well. We employ the two-site extended Bose-Hubbard Hamiltonian and characterize the ground-state of this system by the Fisher information, coher ence visibility, and entanglement entropy. These quantities are studied as functions of the interaction between bosons in different wells. The emergence of Schroedinger-cat like state with a loss of coherence is also commented.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا