ترغب بنشر مسار تعليمي؟ اضغط هنا

We have performed calculations of attosecond laser-atom interactions for laser intensities where interesting two and three photon effects become relevant. In particular, we examine the case of hole burning in the initial orbital. Hole burning is pres ent when the laser pulse duration is shorter than the classical radial period because the electron preferentially absorbs the photon near the nucleus. We also examine how 3 photon Raman process can lead to a time delay in the outgoing electron for the energy near one photon absorption. For excitation out of the hydrogen $2s$ state, an intensity of $2.2times 10^{16}$ W/cm$^2$ leads to a 6 attosecond delay of the outgoing electron. We argue that this delay is due to the hole burning in the initial state.
Radio-frequency (rf) fields in the MHz range are used to induce resonant energy transfer between cold Rydberg atoms in spatially separated volumes. After laser preparation of the Rydberg atoms, dipole-dipole coupling excites the 49s atoms in one cyli nder to the 49p state while the 41d atoms in the second cylinder are transferred down to the 42p state. The energy exchanged between the atoms in this process is 33 GHz. An external rf-field brings this energy transfer into resonance. The strength of the interaction has been investigated as a function of amplitude (0-1 V/cm) and frequency (1-30 MHz) of the rf-field and as a function of a static field offset. Multi-photon transitions up to fifth order as well as selection rules prohibiting the process at certain fields have been observed. The width of the resonances has been reduced compared to earlier results by switching off external magnetic fields of the magneto-optical trap, making sub-MHz spectroscopy possible. All features are well reproduced by theoretical calculations taking the strong ac-Stark shift due to the rf-field into account.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا