ترغب بنشر مسار تعليمي؟ اضغط هنا

121 - Zhou Li , L. Covaci , M. Berciu 2011
We utilize an exact variational numerical procedure to calculate the ground state properties of a polaron in the presence of a Rashba-like spin orbit interaction. Our results corroborate with previous work performed with the Momentum Average approxim ation and with weak coupling perturbation theory. We find that spin orbit coupling increases the effective mass in the regime with weak electron phonon coupling, and decreases the effective mass in the intermediate and strong electron phonon coupling regime. Analytical strong coupling perturbation theory results confirm our numerical results in the small polaron regime. A large amount of spin orbit coupling can lead to a significant lowering of the polaron effective mass.
We propose a highly efficient numerical method to describe inhomogeneous superconductivity by using the kernel polynomial method in order to calculate the Greens functions of a superconductor. Broken translational invariance of any type (impurities, surfaces or magnetic fields) can be easily incorporated. We show that limitations due to system size can be easily circumvented and therefore this method opens the way for the study of scenarios and/or geometries that were unaccessible before. The proposed method is highly efficient and amenable to large scale parallel computation. Although we only use it in the context of superconductivity, it is applicable to other inhomogeneous mean-field theories.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا