ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a microscopic theory for the current through a tunnel Josephson junction coupled to a non-linear environment, which consists of an Andreev two-level system coupled to a harmonic oscillator. It models a recent experiment [Bretheau, Girit, P othier, Esteve, and Urbina, Nature (London) 499, 312 (2013)] on photon spectroscopy of Andreev bound states in a superconducting atomic-size contact. We find the eigenenergies and eigenstates of the environment and derive the current through the junction due to inelastic Cooper pair tunneling. The current-voltage characteristic reveals the transitions between the Andreev bound states, the excitation of the harmonic mode that hybridizes with the Andreev bound states, as well as multi-photon processes. The calculated spectra are in fair agreement with the experimental data.
We measure the excitation spectrum of a superconducting atomic contact. In addition to the usual continuum above the superconducting gap, the single particle excitation spectrum contains discrete, spin-degenerate Andreev levels inside the gap. Quasip article excitations are induced by a broadband on-chip microwave source and detected by measuring changes in the supercurrent flowing through the atomic contact. Since microwave photons excite quasiparticles in pairs, two types of transitions are observed: Andreev transitions, which consists of putting two quasiparticles in an Andreev level, and transitions to odd states with a single quasiparticle in an Andreev level and the other one in the continuum. In contrast to absorption spectroscopy, supercurrent spectroscopy allows detection of long-lived odd states.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا