ترغب بنشر مسار تعليمي؟ اضغط هنا

71 - G.Wang , I. C. Gerber , L. Bouet 2015
We combine linear and non-linear optical spectroscopy at 4K with ab initio calculations to study the electronic bandstructure of MoSe2 monolayers. In 1-photon photoluminescence excitation (PLE) and reflectivity we measure a separation between the A- and B-exciton emission of 220 meV. In 2-photon PLE we detect for the A- and B-exciton the 2p state 180meV above the respective 1s state. In second harmonic generation (SHG) spectroscopy we record an enhancement by more than 2 orders of magnitude of the SHG signal at resonances of the charged exciton and the 1s and 2p neutral A- and B-exciton. Our post-Density Functional Theory calculations show in the conduction band along the $K-Gamma$ direction a local minimum that is energetically and in k-space close to the global minimum at the K-point. This has a potentially strong impact on the polarization and energy of the excitonic states that govern the interband transitions and marks an important difference to MoS2 and WSe2 monolayers.
110 - G. Wang , L. Bouet , M. M. Glazov 2015
We perform photoluminescence experiments at 4K on two different transition metal diselenide monolayers, namely MoSe2 and WSe2 in magnetic fields $B_z$ up to 9T applied perpendicular to the sample plane. In MoSe2 monolayers the valley polarization of the neutral and the charged exciton (trion) can be tuned by the magnetic field, independent of the excitation laser polarization. In the investigated WSe2 monolayer sample the evolution of the trion valley polarization depends both on the applied magnetic field and the excitation laser helicity, while the neutral exciton valley polarization depends only on the latter. Remarkably we observe a reversal of the sign of the trion polarization between WSe2 and MoSe2. For both systems we observe a clear Zeeman splitting for the neutral exciton and the trion of about $pm2$meV at $B_zmp9$T. The extracted Land{e}-factors for both exciton complexes in both materials are $gapprox -4$.
77 - G. Wang , L. Bouet , D. Lagarde 2014
Optical interband transitions in monolayer transition metal dichalcogenides such as WSe2 and MoS2 are governed by chiral selection rules. This allows efficient optical initialization of an electron in a specific K-valley in momentum space. Here we pr obe the valley dynamics in monolayer WSe2 by monitoring the emission and polarization dynamics of the well separated neutral excitons (bound electron hole pairs) and charged excitons (trions) in photoluminescence. The neutral exciton photoluminescence intensity decay time is about 4ps, whereas the trion emission occurs over several tens of ps. The trion polarization dynamics shows a partial, fast initial decay within tens of ps before reaching a stable polarization of about 20%, for which a typical valley polarization decay time larger than 1ns can be inferred. This is a clear signature of stable, optically initialized valley polarization.
88 - G. Sallen , L. Bouet , X. Marie 2012
We report polarization resolved photoluminescence from monolayer MoS2, a two-dimensional, non-centrosymmetric crystal with direct energy gaps at two different valleys in momentum space. The inherent chiral optical selectivity allows exciting one of t hese valleys and close to 90% polarized emission at 4K is observed with 40% polarization remaining at 300K. The high polarization degree of the emission remains unchanged in transverse magnetic fields up to 9T indicating robust, selective valley excitation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا