ترغب بنشر مسار تعليمي؟ اضغط هنا

108 - M. Breger , L. Fossati , L. Balona 2012
Two years of Kepler data of KIC 8054146 (delta Sct/gamma Dor hybrid) revealed 349 statistically significant frequencies between 0.54 and 191.36 c/d (6.3 microHz to 2.21 mHz). The 117 low frequencies cluster in specific frequency bands, but do not sho w the equidistant period spacings predicted for gravity modes of successive radial order, n, and reported for at least one other hybrid pulsator. The four dominant low frequencies in the 2.8 to 3.0 c/d (32 to 35 microHz) range show strong amplitude variability with timescales of months and years. These four low frequencies also determine the spacing of the higher frequencies in and beyond the delta Sct pressure-mode frequency domain. In fact, most of the higher frequencies belong to one of three families with spacings linked to a specific dominant low frequency. In the Fourier spectrum, these family regularities show up as triplets, high-frequency sequences with absolutely equidistant frequency spacings, side lobes (amplitude modulations) and other regularities in frequency spacings. Furthermore, within two families the amplitude variations between the low and high frequencies are related. We conclude that the low frequencies (gravity modes, rotation) and observed high frequencies (mostly pressure modes) are physically connected. This unusual behavior may be related to the very rapid rotation of the star: from a combination of high and low-resolution spectroscopy we determined that KIC 8054146 is a very fast rotator (v sin i = 300 +/- 20 km/s) with an effective temperature of 7600 +/- 200 K and a surface gravity log g of 3.9 +/- 0.3. Several astrophysical ideas explaining the origin of the relationship between the low and high frequencies are explored.
Observations of the pulsations of stars can be used to infer their interior structure and test theoretical models. The main sequence $gamma$ Doradus (Dor) and $delta$ Scuti (Sct) stars with masses 1.2-2.5 $M_{sun}$ are particularly useful for these s tudies. The $gamma$ Dor stars pulsate in high-order $g$ modes with periods of order 1 day, driven by convective blocking at the base of their envelope convection zone. The $delta$ Sct stars pulsate in low-order $g$ and $p$ modes with periods of order 2 hours, driven by the $kappa$ mechanism operating in the Heii ionization zone. Theory predicts an overlap region in the Hertzsprung-Russell diagram between instability regions, where hybrid stars pulsating in both types of modes should exist. The two types of modes with properties governed by different portions of the stellar interior provide complementary model constraints. Among the known $gamma$ Dor and $delta$ Sct stars, only four have been confirmed as hybrids. Now, analysis of combined Quarter 0 and Quarter 1 Kepler data for hundreds of variable stars shows that the frequency spectra are so rich that there are practically no pure $delta$ Sct or $gamma$ Dor pulsators, i.e. essentially all of the stars show frequencies in both the $delta$ Sct and $gamma$ Dor frequency range. A new observational classification scheme is proposed that takes into account the amplitude as well as the frequency, and is applied to categorize 234 stars as $delta$ Sct, $gamma$ Dor, $delta$ Sct/$gamma$ Dor or $gamma$ Dor/$delta$ Sct hybrids.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا