ترغب بنشر مسار تعليمي؟ اضغط هنا

Advances in solar instrumentation have led to a widespread usage of time series to study the dynamics of solar features, specially at small spatial scales and at very fast cadences. Physical processes at such scales are determinant as building blocks for many others occurring from the lower to the upper layers of the solar atmosphere and beyond, ultimately for understanding the bigger picture of solar activity. Ground-based (SST) and space-borne (Hinode) high-resolution solar data are analyzed in a quiet Sun region displaying negative polarity small-scale magnetic concentrations and a cluster of bright points observed in G-band and Ca II H images. The studied region is characterized by the presence of two small-scale convective vortex-type plasma motions, one of which appears to be affecting the dynamics of both, magnetic features and bright points in its vicinity and therefore the main target of our investigations. We followed the evolution of bright points, intensity variations at different atmospheric heights and magnetic evolution for a set of interesting selected regions. A description of the evolution of the photospheric plasma motions in the region nearby the convective vortex is shown, as well as some plausible cases for convective collapse detected in Stokes profiles.
High-resolution observations of a quiet Sun internetwork region taken with the Solar 1-m Swedish Telescope in La Palma are analyzed. We determine the location of small-scale vortex motions in the solar photospheric region by computing the horizontal proper motions of small-scale structures on time series of images. These plasma convectively-driven swirl motions are associated to: (1) downdrafts (that have been commonly explained as corresponding to sites where the plasma is cooled down and hence returned to the interior below the visible photospheric level), and (2) horizontal velocity vectors converging into a central point. The sink cores are proved to be the final destination of passive floats tracing plasma flows towards the center of each vortex. We establish the occurrence of these events to be 1.4 x 10^(-3) and 1.6 x 10^(-3) vortices Mm^(-2) min^(-1) respectively for two time series analyzed here.
Vortex-type motions have been measured by tracking bright points in high-resolution observations of the solar photosphere. These small-scale motions are thought to be determinant in the evolution of magnetic footpoints and their interaction with plas ma and therefore likely to play a role in heating the upper solar atmosphere by twisting magnetic flux tubes. We report the observation of magnetic concentrations being dragged towards the center of a convective vortex motion in the solar photosphere from high-resolution ground-based and space-borne data. We describe this event by analyzing a series of images at different solar atmospheric layers. By computing horizontal proper motions, we detect a vortex whose center appears to be the draining point for the magnetic concentrations detected in magnetograms and well-correlated with the locations of bright points seen in G-band and CN images.
The historical record of sunspot areas is a valuable and widely used proxy of solar activity and variability. The Royal Greenwich Observatory (RGO) regularly measured this and other parameters between 1874 and 1976. After that time records from a num ber of different observatories are available. These, however, show systematic differences and often have significants gaps. Our goal is to obtain a uniform and complete sunspot area time series by combining different data sets. A homogeneus composite of sunspot areas is essential for different applications in solar physics, among others for irradiance reconstructions. Data recorded simultaneously at different observatories are statistically compared in order to determine the intercalibration factors. Using these data we compile a complete and cross-calibrated time series. The Greenwich data set is used as a basis until 1976, the Russian data (a compilation of observations made at stations in the former USSR) between 1977 and 1985 and data compiled by the USAF network since 1986. Other data sets (Rome, Yunnan, Catania) are used to fill up the remaining gaps. Using the final sunspot areas record the Photometric Sunspot Index is calculated. We also show that the use of uncalibrated sunspot areas data sets can seriously affect the estimate of irradiance variations. Our analysis implies that there is no basis for the claim that UV irradiance variations have a much smaller influence on climate than total solar irradiance variations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا