ترغب بنشر مسار تعليمي؟ اضغط هنا

The PSR J2222-0137 binary system is a unique laboratory for testing gravity theories. To fully exploit its potential for the tests, we aim to improve the measurements of its physical parameters: spin, orbital orientation, and post-Keplerian parameter s which quantify the observed relativistic effects. We present improved analysis of archival VLBI data, using a coordinate convention in full agreement with that used in timing. We also obtain much improved polarimetry with FAST. We provide an analysis of significantly extended timing data taken with Effelsberg, Nancay, Lovell and Green Bank telescopes. From VLBI analysis we obtain a new estimate of the position angle of ascending node, Omega=189(19) deg, and a new position of the pulsar with more conservative uncertainty. The FAST polarimetry and in particular the detection of an interpulse, yield much improved estimate for the spin geometry of the pulsar, in particular an inclination of the spin axis of 84 deg. From the timing we obtain a new 1% test of general relativity (GR) from the agreement of the Shapiro delay and the advance rate of periastron. Assuming GR in a self-consistent analysis of all effects, we obtain much improved mass: 1.831(10) M_sun for the pulsar and 1.319(4) M_sun for the companion; the total mass, 3.150(14) M_sun confirms it as the most massive double degenerate binary known in the Galaxy. This analysis also yields the orbital orientation: the orbital inclination is 85.27(4) deg, indicating a close alignment between the spin of the pulsar and the orbital angular momentum; Omega = 188(6) deg, matching our VLBI result. We also obtain precise value of the orbital period derivative, 0.251(8)e-12 s s^-1, consistent with the expected variation of Doppler factor plus the orbital decay caused by emission of gravitational wave (GW) predicted by GR. This agreement introduces stringent constraint on the emission of dipolar GW.
We report on a high-precision timing analysis and an astrophysical study of the binary millisecond pulsar, PSR J1909$-$3744, motivated by the accumulation of data with well improved quality over the past decade. Using 15 years of observations with th e Nanc{c}ay Radio Telescope, we achieve a timing precision of approximately 100 ns. We verify our timing results by using both broad-band and sub-band template matching methods to create the pulse time-of-arrivals. Compared with previous studies, we improve the measurement precision of secular changes in orbital period and projected semi-major axis. We show that these variations are both dominated by the relative motion between the pulsar system and the solar system barycenter. Additionally, we identified four possible solutions to the ascending node of the pulsar orbit, and measured a precise kinetic distance of the system. Using our timing measurements and published optical observations, we investigate the binary history of this system using the stellar evolution code MESA, and discuss solutions based on detailed WD cooling at the edge of the WD age dichotomy paradigm. We determine the 3-D velocity of the system and show that it has been undergoing a highly eccentric orbit around the centre of our Galaxy. Furthermore, we set up a constraint over dipolar gravitational radiation with the system, which is complementary to previous studies given the mass of the pulsar. We also obtain a new limit on the parameterised post-Newtonian parameter, $alpha_1<2.1 times 10^{-5}$ at 95 % confidence level, which is fractionally better than previous best published value and achieved with a more concrete method.
We report on the timing observations of the millisecond pulsar PSR J2055+3829 originally discovered as part of the SPAN512 survey conducted with the Nanc{c}ay Radio Telescope. The pulsar has a rotational period of 2.089 ms, and is in a tight 3.1 hr o rbit around a very low mass ($0.023 leq m_c lesssim 0.053$ M$_odot$, 90% c.l.) companion. Our 1.4 GHz observations reveal the presence of eclipses of the pulsars radio signal caused by the outflow of material from the companion, for a few minutes around superior conjunction of the pulsar. The very low companion mass, the observation of radio eclipses, and the detection of time variations of the orbital period establish PSR J2055+3829 as a `black widow (BW) pulsar. Inspection of the radio signal from the pulsar during ingress and egress phases shows that the eclipses in PSR J2055+3829 are asymmetric and variable, as is commonly observed in other similar systems. More generally, the orbital properties of the new pulsar are found to be very similar to those of other known eclipsing BW pulsars. No gamma-ray source is detected at the location of the pulsar in recent textit{Fermi}-LAT source catalogs. We used the timing ephemeris to search ten years of textit{Fermi} Large Area Telescope (LAT) data for gamma-ray pulsations, but were unable to detect any, possibly because of the pulsars large distance. We finally compared the mass functions of eclipsing and non-eclipsing BW pulsars and confirmed previous findings that eclipsing BWs have higher mass functions than their non-eclipsing counterparts. Larger inclinations could explain the higher mass functions of eclipsing BWs. On the other hand, the mass function distributions of Galactic disk and globular cluster BWs appear to be consistent, suggesting, despite the very different environments, the existence of common mechanisms taking place in the last stages of evolution of BWs.
Millisecond pulsars (MSPs) represent nearly half of the more than 160 currently known $gamma$-ray pulsars detected by the Large Area Telescope on the textit{Fermi} satellite, and a third of all known MSPs are seen in $gamma$ rays. The least energetic $gamma$-ray MSPs enable us to probe the so-called deathline for high-energy emission, i.e., the spin-down luminosity limit under which pulsars (PSRs) cease to produce detectable high-energy radiation. Characterizing the MSP luminosity distribution helps to determine their contribution to the Galactic diffuse $gamma$-ray emission. We made use of the high-quality pulsar timing data recorded at the Nanc{c}ay Radio Telescope over several years to characterize the properties of a selection of MSPs. For one of the pulsars, the dataset was complemented with Westerbork Synthesis Radio Telescope observations. The rotation ephemerides derived from this analysis were also used to search the LAT data for new $gamma$-ray MSPs. For the MSPs considered in this study, we obtained new transverse proper motion measurements or updated the existing ones, and placed new distance constraints for some of them, with four new timing parallax measurements. We discovered significant GeV $gamma$-ray signals from four MSPs, i.e., PSRs J0740+6620, J0931$-$1902, J1455$-$3330, and J1730$-$2304. The latter is now the least energetic $gamma$-ray pulsar found to date. Despite the improved $dot E$ and $L_gamma$ estimates, the relationship between these two quantities remains unclear, especially at low $dot E$ values.
The Fermi Large Area Telescope (LAT) is a powerful pulsar detector, as demonstrated by the over one hundred objects in its second catalog of pulsars. Pass 8 is a new reconstruction and event selection strategy developed by the Fermi-LAT collaboration . Due to the increased acceptance at low energy, Pass 8 improves the pulsation detection sensitivity. Ten new pulsars rise above the 5 sigma threshold and are presented in this work, as well as one previously seen with the former Pass 7 reconstruction. More than 60$%$ of the known pulsars with spin-down power ($dot{E}$) greater than $10^{36}$ erg/s show pulsations in gamma-rays, as seen with the Fermi Large Area Telescope. Many non-detections of these energetic pulsars are thought to be a consequence of a high background level, or a large distance leading to a flux below the sensitivity limit of the instrument. The gamma-ray beams of the others probably miss the Earth. The new Pass 8 data now allows the detection of gamma ray pulsations from three of these high spin-down pulsars, PSRs J1828$-$1101, J1831$-$0952 and J1837$-$0604, as well as three others with $dot{E}$ $ge 10^{35}$ erg/s. We report on their properties and we discuss the reasons for their detection with Pass 8.
215 - L. Guillemot , T. M. Tauris 2014
Millisecond pulsars (MSPs) and normal non-recycled pulsars are both detected in $gamma$-rays. However, it appears that a much larger fraction of known energetic and nearby MSPs are detected in $gamma$-rays, in comparison with normal pulsars, thereby making undetected $gamma$-ray MSPs exceptions. In this paper, we demonstrate that the viewing angles (i.e. between the pulsar spin axis and the line of sight) are well described by the orbital inclination angles which, for binary MSPs with helium white dwarf companions, can be determined using the relationship between the orbital period and the white dwarf mass. We use the predicted viewing angles, in complement with values obtained from other constraints when available, to identify the causes of non-detection of energetic and nearby MSPs from the point of view of beaming geometry and orientation. We find evidence for slightly different viewing angle distributions, and postulate that energetic and nearby MSPs are mainly undetected in $gamma$-rays simply because they are seen under unfavourable (i.e. small) viewing angles. We finally discuss the magnetic fields of $gamma$-ray detected pulsars and show that pulsars which are efficient at converting their rotational energy into $gamma$-ray emission may have overestimated dipolar magnetic field strengths.
We report the discovery of four gamma-ray pulsars, detected in computing-intensive blind searches of data from the Fermi Large Area Telescope (LAT). The pulsars were found using a novel search approach, combining volunteer distributed computing via E instein@Home and methods originally developed in gravitational-wave astronomy. The pulsars PSRs J0554+3107, J1422-6138, J1522-5735, and J1932+1916 are young and energetic, with characteristic ages between 35 and 56 kyr and spin-down powers in the range $6times10^{34}$ - $10^{36}$ erg s$^{-1}$. They are located in the Galactic plane and have rotation rates of less than 10 Hz, among which the 2.1 Hz spin frequency of PSR J0554+3107 is the slowest of any known gamma-ray pulsar. For two of the new pulsars, we find supernova remnants coincident on the sky and discuss the plausibility of such associations. Deep radio follow-up observations found no pulsations, suggesting that all four pulsars are radio-quiet as viewed from Earth. These discoveries, the first gamma-ray pulsars found by volunteer computing, motivate continued blind pulsar searches of the many other unidentified LAT gamma-ray sources.
We report a 5.4sigma detection of pulsed gamma rays from PSR B1821-24 in the globular cluster M28 using ~44 months of Fermi Large Area Telescope (LAT) data that have been reprocessed with improved instrument calibration constants. We constructed a ph ase-coherent ephemeris, with post-fit residual RMS of 3 mu s, using radio data spanning ~23.2 years, enabling measurements of the multi-wavelength light curve properties of PSR B1821-24 at the milliperiod level. We fold RXTE observations of PSR B1821-24 from 1996 to 2007 and discuss implications on the emission zones. The gamma-ray light curve consists of two peaks, separated by 0.41$pm$0.02 in phase, with the first gamma-ray peak lagging the first radio peak by 0.05$pm$0.02 in phase, consistent with the phase of giant radio pulses. We observe significant emission in the off-peak interval of PSR B1821-24 with a best-fit LAT position inconsistent with the core of M28. We do not detect significant gamma-ray pulsations at the spin or orbital periods from any other known pulsar in M28, and we place limits on the number of energetic pulsars in the cluster. The derived gamma-ray efficiency, ~2%, is typical of other gamma-ray pulsars with comparable spin-down power, suggesting that the measured spin-down rate ($2.2times10^{36}$ erg s$^{-1}$) is not appreciably distorted by acceleration in the cluster potential. This confirms PSR B1821-24 as the second very energetic millisecond pulsar in a globular cluster and raises the question of whether these represent a separate class of objects that only form in regions of very high stellar density
We report the Fermi Large Area Telescope discovery of gamma-ray pulsations from the 22.7 ms pulsar A in the double pulsar system J0737-3039A/B. This is the first mildly recycled millisecond pulsar (MSP) detected in the GeV domain. The 2.7 s companion object PSR J0737-3039B is not detected in gamma rays. PSR J0737-3039A is a faint gamma-ray emitter, so that its spectral properties are only weakly constrained; however, its measured efficiency is typical of other MSPs. The two peaks of the gamma-ray light curve are separated by roughly half a rotation and are well offset from the radio and X-ray emission, suggesting that the GeV radiation originates in a distinct part of the magnetosphere from the other types of emission. From the modeling of the radio and the gamma-ray emission profiles and the analysis of radio polarization data, we constrain the magnetic inclination $alpha$ and the viewing angle $zeta$ to be close to 90$^circ$, which is consistent with independent studies of the radio emission from PSR J0737-3039A. A small misalignment angle between the pulsars spin axis and the systems orbital axis is therefore favored, supporting the hypothesis that pulsar B was formed in a nearly symmetric supernova explosion as has been discussed in the literature already.
Using the 100-m Effelsberg radio telescope operating at 1.36 GHz, we have performed a targeted radio pulsar survey of 289 unassociated gamma-ray sources discovered by the Large Area Telescope (LAT) aboard the Fermi satellite and published in the 1FGL catalogue (Abdo et al., 2010). This survey resulted in the discovery of millisecond pulsar J1745+1017, which resides in a short-period binary system with a low-mass companion, Mmin ~ 0.0137 Msun, indicative of `Black Widow type systems. A two-year timing campaign has produced a refined radio ephemeris, accurate enough to allow for phase-folding of the LAT photons, resulting in the detection of a dual-peaked gamma-ray light-curve, proving that PSR J1745+1017 is the source responsible for the gamma-ray emission seen in 1FGL J1745.5 + 1018 (2FGL J1745.6+1015; Nolan et al., 2012). We find the gamma-ray spectrum of PSR J1745+1017 to be well modelled by an exponentially-cut-off power law with cut-off energy 3.2 GeV and photon index 1.6. The observed sources are known to contain a further 10 newly discovered pulsars which were undetected in this survey. Our radio observations of these sources are discussed and in all cases limiting flux densities are calculated. The reasons behind the seemingly low yield of discoveries are also discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا