ترغب بنشر مسار تعليمي؟ اضغط هنا

A computational method based on a first-principles multiscale simulation has been used for calculating the optical response and the ablation threshold of an optical material irradiated with an ultrashort intense laser pulse. The method employs Maxwel ls equations to describe laser pulse propagation and time-dependent density functional theory to describe the generation of conduction band electrons in an optical medium. Optical properties, such as reflectance and absorption, were investigated for laser intensities in the range $10^{10} , mathrm{W/cm^{2}}$ to $2 times 10^{15} , mathrm{W/cm^{2}}$ based on the theory of generation and spatial distribution of the conduction band electrons. The method was applied to investigate the changes in the optical reflectance of $alpha$-quartz bulk, half-wavelength thin-film and quarter-wavelength thin-film and to estimate their ablation thresholds. Despite the adiabatic local density approximation used in calculating the exchange--correlation potential, the reflectance and the ablation threshold obtained from our method agree well with the previous theoretical and experimental results. The method can be applied to estimate the ablation thresholds for optical materials in general. The ablation threshold data can be used to design ultra-broadband high-damage-threshold coating structures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا