ترغب بنشر مسار تعليمي؟ اضغط هنا

Do spatial distributions of dust grains in galaxies have typical forms, as do spatial distributions of stars? We investigate whether or not the distributions resemble uniform foreground screens, as commonly assumed by the high-redshift galaxy communi ty. We use rest-frame infrared, ultraviolet, and H$alpha$ line luminosities of dust-poor and dusty galaxies at z ~ 0 and z ~ 1 to compare measured H$alpha$ escape fractions with those predicted by the Calzetti attenuation formula. The predictions, based on UV escape fractions, overestimate the measured H$alpha$ escape fractions for all samples. The interpretation of this result for dust-poor z ~ 0 galaxies is that regions with ionizing stars have more dust than regions with nonionizing UV-emitting stars. Dust distributions for these galaxies are nonuniform. The interpretation of the overestimates for dusty galaxies at both redshifts is less clear. If the attenuation formula is inapplicable to these galaxies, perhaps the disagreements are unphysical; perhaps dust distributions in these galaxies are uniform. If the attenuation formula does apply, then dusty galaxies have nonuniform dust distributions; the distributions are more uniform than they are in dust-poor galaxies. A broad range of H$alpha$ escape fractions at a given UV escape fraction for z ~ 1 dusty galaxies, if real, indicates diverse dust morphologies and the implausibility of the screen assumption.
Dusty galaxies at z ~ 2 span a wide range of relative brightness between rest-frame mid-infrared (8um) and ultraviolet wavelengths. We attempt to determine the physical mechanism responsible for this diversity. Dust-obscured galaxies (DOGs), which ha ve rest-frame mid-IR to UV flux density ratios > 1000, might be abnormally bright in the mid-IR, perhaps due to prominent AGN and/or PAH emission, or abnormally faint in the UV. We use far-infrared data from the GOODS-Herschel survey to show that most DOGs with 10^12 L_Sun < L_IR < 10^13 L_Sun are not abnormally bright in the mid-IR when compared to other dusty galaxies with similar IR (8--1000um) luminosities. We observe a relation between the median IR to UV luminosity ratios and the median UV continuum power-law indices for these galaxies, and we find that only 24% have specific star formation rates which indicate the dominance of compact star-forming regions. This circumstantial evidence supports the idea that the UV- and IR-emitting regions in these galaxies are spatially coincident, which implies a connection between the abnormal UV faintness of DOGs and dust obscuration. We conclude that the range in rest-frame mid-IR to UV flux density ratios spanned by dusty galaxies at z ~ 2 is due to differing amounts of UV obscuration. Of galaxies with these IR luminosities, DOGs are the most obscured. We attribute differences in UV obscuration to either: 1) differences in the degree of alignment between the spatial distributions of dust and massive stars, or 2) differences in the total dust content.
The Chandra Multiwavelength Plane (ChaMPlane) Survey aims to constrain the Galactic population of mainly accretion-powered, but also coronal, low-luminosity X-ray sources (Lx <~ 1e33 erg/s). To investigate the X-ray source content in the plane at flu xes Fx >~ 3e-14 erg/s/cm^2, we study 21 of the brightest ChaMPlane sources, viz. those with >250 net counts (0.3-8 keV). By excluding the heavily obscured central part of the plane, our optical/near-infrared follow-up puts useful constraints on their nature. We have discovered two likely accreting white-dwarf binaries. CXOPS J154305.5-522709 (CBS 7) is a cataclysmic variable showing periodic X-ray flux modulations on 1.2 hr and 2.4 hr; given its hard spectrum the system is likely magnetic. We identify CXOPS J175900.8-334548 (CBS 17) with a late-type giant; if the X-rays are indeed accretion-powered, it belongs to the small but growing class of symbiotic binaries lacking strong optical nebular emission lines. CXOPS J171340.5-395213 (CBS 14) is an X-ray transient that brightened >~100 times. We tentatively classify it as a very late-type (>M7) dwarf, of which few have been detected in X-rays. The remaining sources are (candidate) active galaxies, normal stars and active binaries, and a plausible young T Tauri star. The derived cumulative number density versus flux (log N - log S) relation for the Galactic sources appears flatter than expected for an isotropic distribution, indicating that we are seeing a non-local sample of mostly coronal sources. Our findings define source templates that we can use, in part, to classify the >1e4 fainter sources in ChaMPlane.
We present a study of the cosmic infrared background, which is a measure of the dust obscured activity in all galaxies in the Universe. We venture to isolate the galaxies responsible for the background at 1mm; with spectroscopic and photometric redsh ifts we constrain the redshift distribution of these galaxies. We create a deep 1.16mm map (sigma ~ 0.5mJy) by combining the AzTEC 1.1mm and MAMBO 1.2mm datasets in GOODS-N. This combined map contains 41 secure detections, 13 of which are new. By averaging the 1.16mm flux densities of individually undetected galaxies with 24um flux densities > 25uJy, we resolve 31--45 per cent of the 1.16mm background. Repeating our analysis on the SCUBA 850um map, we resolve a higher percentage (40--64 per cent) of the 850um background. A majority of the background resolved (attributed to individual galaxies) at both wavelengths comes from galaxies at z > 1.3. If the ratio of the resolved submillimeter to millimeter background is applied to a reasonable scenario for the origins of the unresolved submillimeter background, 60--88 per cent of the total 1.16mm background comes from galaxies at z > 1.3.
421 - Kyle Penner 2008
The Chandra Multiwavelength Plane (ChaMPlane) Survey is a comprehensive effort to constrain the population of accretion-powered and coronal low-luminosity X-ray sources (L_X < 10^33 erg s^-1) in the Galaxy. ChaMPlane incorporates X-ray, optical, and infrared observations of fields in the Galactic Plane imaged with Chandra in the past six years. We present the results of a population study of the brightest X-ray sources in ChaMPlane. We use X-ray spectral fitting, X-ray lightcurve analysis, and optical photometry of candidate counterparts to determine the properties of 21 sources. Our sample includes a previously unreported quiescent low-mass X-ray binary or cataclysmic variable (R = 20.9) and ten stellar sources (12.5 < R < 15), including one flare star (R = 17.3). We find that quantile analysis, a new technique developed for constraining the X-ray spectral properties of low-count sources, is largely consistent with spectral fitting.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا