ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-convex optimization is ubiquitous in machine learning. Majorization-Minimization (MM) is a powerful iterative procedure for optimizing non-convex functions that works by optimizing a sequence of bounds on the function. In MM, the bound at each it eration is required to emph{touch} the objective function at the optimizer of the previous bound. We show that this touching constraint is unnecessary and overly restrictive. We generalize MM by relaxing this constraint, and propose a new optimization framework, named Generalized Majorization-Minimization (G-MM), that is more flexible. For instance, G-MM can incorporate application-specific biases into the optimization procedure without changing the objective function. We derive G-MM algorithms for several latent variable models and show empirically that they consistently outperform their MM counterparts in optimizing non-convex objectives. In particular, G-MM algorithms appear to be less sensitive to initialization.
We introduce a new conception of community structure, which we refer to as hidden community structure. Hidden community structure refers to a specific type of overlapping community structure, in which the detection of weak, but meaningful, communitie s is hindered by the presence of stronger communities. We present Hidden Community Detection HICODE, an algorithm template that identifies both the strong, dominant community structure as well as the weaker, hidden community structure in networks. HICODE begins by first applying an existing community detection algorithm to a network, and then removing the structure of the detected communities from the network. In this way, the structure of the weaker communities becomes visible. Through application of HICODE, we demonstrate that a wide variety of real networks from different domains contain many communities that, though meaningful, are not detected by any of the popular community detection algorithms that we consider. Additionally, on both real and synthetic networks containing a hidden ground-truth community structure, HICODE uncovers this structure better than any baseline algorithms that we compared against. For example, on a real network of undergraduate students that can be partitioned either by `Dorm (residence hall) or `Year, we see that HICODE uncovers the weaker `Year communities with a JCRecall score (a recall-based metric that we define in the text) of over 0.7, while the baseline algorithms achieve scores below 0.2.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا