ترغب بنشر مسار تعليمي؟ اضغط هنا

We demonstrate a current tunable Rashba spin orbit interaction in LaAlO3/SrTiO3 (LAO/STO) quasi two dimensional electron gas (2DEG) system. Anisotropic magnetoresistance (AMR) measurements are employed to detect and understand the current-induced Ras hba field. The effective Rashba field scales with the current and a value of 2.35 T is observed for a dc-current of 200 uA. The results suggest that LAO/STO heterostructures can be considered for spin orbit torque based magnetization switching.
We study field-induced domain wall motion in permalloy nanowires with vertically etched nanotrench pinning site. Micromagnetic simulations and electrical measurements are employed to characterize the pinning potential at the nanotrench. It is found t hat the potential profile for a transverse wall significantly differs from that of a vortex wall, and there is a correlation between the pinning strength and the potential profile. Reliable domain wall pinning and depinning is experimentally observed from a nanotrench in permalloy nanowires. This demonstrates the suitability of the proposed nanotrench pinning sites for domain wall device applications.
We study thermally assisted domain wall generation in perpendicular magnetic anisotropy CoFeB trilayer nanowires by the effect of Joule heating. The anomalous Hall effect is utilized to detect magnetization reversal in order to study the domain wall generation. We observe a statistical distribution in the switching process which is consistent with the thermal activation process. Our results show that the proposed method provides an efficient way for generating domain walls in perpendicular magnetic nanowires at predefined locations.
Current induced spin-orbit effective magnetic fields in metal/ferromagnet/oxide trilayers provide a new way to manipulate the magnetization, which is an alternative to the conventional current induced spin transfer torque arising from noncollinear ma gnetization. Ta/CoFeB/MgO structures are expected to be useful for non-volatile memories and logic devices due to its perpendicular anisotropy and large current induced spin-orbit effective fields. However many aspects such as the angular and temperature dependent phenomena of the effective fields are little understood. Here, we evaluate the angular and temperature dependence of the current-induced spin-orbit effective fields considering contributions from both the anomalous and planar Hall effects. The longitudinal and transverse components of effective fields are found to have strong angular dependence on the magnetization direction at 300 K. The transverse field decreases significantly with decreasing temperature, whereas the longitudinal field shows weaker temperature dependence. Our results reveal important features and provide an opportunity for a more comprehensive understanding of current induced spin-orbit effective fields.
Current induced spin-orbit torques have been studied in ferromagnetic nanowires made of 20 nm thick Co/Pd multilayers with perpendicular magnetic anisotropy. Using Hall voltage and lock-in measurements, it is found that upon injection of an electric current both in-plane (Slonczewski-like) and perpendicular (field-like) torques build up in the nanowire. The torque efficiencies are found to be as large as 1.17 kOe and 5 kOe at 108 A/cm2 for the in-plane and perpendicular components, respectively, which is surprisingly comparable to previous studies in ultrathin (~ 1 nm) magnetic bilayers. We show that this result cannot be explained solely by spin Hall effect induced torque at the outer interfaces, indicating a probable contribution of the bulk of the Co/Pd multilayer.
Spin transfer torques allow for electrical manipulation of magnetization at room temperature, which is utilized to build future electronic devices such as spin transfer torque memories. Recent experiments have discovered that the combination of the s pin transfer torque with the spin Hall effect enables more efficient manipulation. A versatile control mechanism of such spin-orbit torques is beneficial to envision device applications with competitive advantages over the existing schemes. Here we report that the oxidation manipulation of spin-orbit torque devices triggers a new mechanism, and the resulting torques are estimated to be about two times stronger than that of the spin Hall effect. Our result introduces an entirely new way to engineer the spin-orbit torques for device operation via oxygen manipulation. Combined with electrical gating for the control of the oxygen content, our finding may also pave the way for towards reconfigurable logic devices.
A stochastic nonlinear electrical characteristic of graphene is reported. Abrupt current changes are observed from voltage sweeps between the source and drain with an on/off ratio up to 10^(3). It is found that graphene channel experience the topolog ical change. Active radicals in an uneven graphene channel cause local changes of electrostatic potential. Simulation results based on the self-trapped electron and hole mechanism account well for the experimental data. Our findings illustrate an important issue of reliable electron transports and help for the understanding of transport properties in graphene devices.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا