ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant inelastic X-ray scattering (RIXS) is used increasingly for characterizing low-energy collective excitations in materials. RIXS is a powerful probe, which often requires sophisticated theoretical descriptions to interpret the data. In particu lar, the need for accurate theories describing the influence of electron-phonon ($e$-p) coupling on RIXS spectra is becoming timely, as instrument resolution improves and this energy regime is rapidly becoming accessible. To date, only rather exploratory theoretical work has been carried out for such problems. We begin to bridge this gap by proposing a versatile variational approximation for calculating RIXS spectra in weakly doped materials, for a variety of models with diverse $e$-p couplings. Here, we illustrate some of its potential by studying the role of electron mobility, which is completely neglected in the widely used local approximation based on Lang-Firsov theory. Assuming that the electron-phonon coupling is of the simplest, Holstein type, we discuss the regimes where the local approximation fails, and demonstrate that its improper use may grossly textit{underestimate} the $e$-p coupling strength.
We study the problem of a single hole in an Ising antiferromagnet and, using the magnon expansion and analytical methods, determine the expansion coefficients of its wave function in the magnon basis. In the 1D case, the hole is weakly confined in a potential well and the magnon coefficients decay exponentially in the absence of a string potential. This behavior is in sharp contrast to the 2D square plane where the hole is strongly confined by a string potential and the magnon coefficients decay superexponentially. The latter is identified here to be a fingerprint of the strings in doped antiferromagnets that can be recognized in the numerical or cold atom simulations of the 2D doped Hubbard model. Finally, we attribute the differences between the 1D and 2D cases to the magnon-magnon interactions being crucially important in a 1D spin system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا