ترغب بنشر مسار تعليمي؟ اضغط هنا

The fullerene C$_{60}$ has four infrared-active vibrational transitions at 7.0, 8.5, 17.4 and 18.9 $mu$m. We have previously observed emission features at 17.4 and 18.9 $mu$m in the reflection nebula NGC 7023 and demonstrated spatial correlations sug gestive of a common origin. We now confirm our earlier identification of these features with C$_{60}$ by detecting a third emission feature at 7.04 $pm$ 0.05 $mu$m in NGC 7023. We also report the detection of these three C$_{60}$ features in the reflection nebula NGC 2023. Our spectroscopic mapping of NGC 7023 shows that the 18.9 $mu$m C$_{60}$ feature peaks on the central star and that the 16.4 $mu$m emission feature due to polycyclic aromatic hydrocarbons peaks between the star and a nearby photodissociation front. The observed features in NGC 7023 are consistent with emission from UV-excited gas-phase C$_{60}$. We find that 0.1-0.6% of interstellar carbon is in C$_{60}$; this abundance is consistent with those from previous upper limits and possible fullerene detections in the interstellar medium. This is the first firm detection of neutral C$_{60}$ in the interstellar medium.
87 - Katia Cunha 2007
We present chemical abundances in a sample of luminous cool stars located within 30 pc of the Galactic Center. Abundances of carbon, nitrogen, oxygen, calcium, and iron were derived from high-resolution infrared spectra in the H- and K-bands. The abu ndance results indicate that both [O/Fe] and [Ca/Fe] are enhanced respectively by averages of +0.2 and +0.3 dex, relative to either the Sun or the Milky Way disk at near solar Fe abundances. The Galactic Center stars show a nearly uniform and nearly solar iron abundance. The mean value of A(Fe) = 7.59 +- 0.06 agrees well with previous work. The total range in Fe abundance among Galactic Center stars, 0.16 dex, is significantly narrower than the iron abundance distributions found in the literature for the older bulge population. Our snapshot of the current-day Fe abundance within 30 pc of the Galactic Center samples stars with an age less than 1 Gyr; a larger sample in time (or space) may find a wider spread in abundances.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا