ترغب بنشر مسار تعليمي؟ اضغط هنا

65 - Koyel Das , A.L. Roy , R. Keller 2011
Context: Radio astronomical receivers are now expanding their frequency range to cover large (octave) fractional bandwidths for sensitivity and spectral flexibility, which makes the design of good analogue circular polarizers challenging. Better pola rization purity requires a flatter phase response over increasingly wide bandwidth, which is most easily achieved with digital techniques. They offer the ability to form circular polarization with perfect polarization purity over arbitrarily wide fractional bandwidths, due to the ease of introducing a perfect quadrature phase shift. Further, the rapid improvements in field programmable gate arrays provide the high processing power, low cost, portability and reconfigurability needed to make practical the implementation of the formation of circular polarization digitally. Aims: Here we explore the performance of a circular polarizer implemented with digital techniques. Methods: We designed a digital circular polarizer in which the intermediate frequency signals from a receiver with native linear polarizations were sampled and converted to circular polarization. The frequency-dependent instrumental phase difference and gain scaling factors were determined using an injected noise signal and applied to the two linear polarizations to equalize the transfer characteristics of the two polarization channels. This equalization was performed in 512 frequency channels over a 512 MHz bandwidth. Circular polarization was formed by quadrature phase shifting and summing the equalized linear polarization signals. Results: We obtained polarization purity of -25 dB corresponding to a D-term of 0.06 over the whole bandwidth. Conclusions: This technique enables construction of broad-band radio astronomy receivers with native linear polarization to form circular polarization for VLBI.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا